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Abstract
Music recommender systems have become an integral part of music streaming
services such as Spotify and Last.fm to assist users navigating the extensive music
collections offered by them. However, while music listeners interested in mainstream
music are traditionally served well by music recommender systems, users interested
in music beyond the mainstream (i.e., non-popular music) rarely receive relevant
recommendations. In this paper, we study the characteristics of beyond-mainstream
music and music listeners and analyze to what extent these characteristics impact the
quality of music recommendations provided. Therefore, we create a novel dataset
consisting of Last.fm listening histories of several thousand beyond-mainstream
music listeners, which we enrich with additional metadata describing music tracks
and music listeners. Our analysis of this dataset shows four subgroups within the
group of beyond-mainstream music listeners that differ not only with respect to their
preferred music but also with their demographic characteristics. Furthermore, we
evaluate the quality of music recommendations that these subgroups are provided
with four different recommendation algorithms where we find significant differences
between the groups. Specifically, our results show a positive correlation between a
subgroup’s openness towards music listened to by members of other subgroups and
recommendation accuracy. We believe that our findings provide valuable insights for
developing improved user models and recommendation approaches to better serve
beyond-mainstream music listeners.

Keywords: Music recommender systems; Acoustic features; Last.fm; Clustering; User
modeling; Fairness; Popularity bias; Beyond-mainstream users

1 Introduction
In the digital era, users have access to continually increasing amounts of music via music
streaming services such as Spotify and Last.fm. Music recommender systems have become
an essential means to help users deal with content and choice overload as they assist users
in searching, sorting, and filtering these extensive music collections. Simultaneously, both
music listeners and artists benefit from the employed segmentation and personalization
approaches that are typically leveraged in music recommendation approaches [1]. As a
result, users with different preferences and needs can be targeted in various ways with the
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Figure 1 Recommendation accuracy measured by
the mean absolute error (MAE) of a non-negative
matrix factorization-based approach (i.e., NMF [10])
and a neighborhood-based approach (i.e., UserKNN
[11]) for mainstream and beyond-mainstream user
groups in Last.fm. We see that beyond-mainstream
users receive a substantially lower recommendation
quality (i.e., higher MAE) compared to mainstream
music listeners. Thus, for recommender systems, it is
harder to provide high-quality recommendations to
beyond-mainstream than to mainstream listeners

goal that all users are presented the information and content that they need or prefer. This
also means that current recommendation techniques should serve all users equally well,
independent of their inclination to popular content.

Present work In the paper at hand, we focus on music consumers who listen to music be-
yond the mainstream (i.e., users who listen to non-popular music) in the music streaming
platform Last.fm.1 As highlighted in Fig. 1, current recommender systems do not work
well for consumers of beyond-mainstream music (see Sect. 3.5 for details on this anal-
ysis). In contrast, music consumers who listen to popular music seem to get better rec-
ommendations. This finding is not essentially new. In fact, it is a widely-known problem
that recommender systems (and those based on collaborative filtering, in particular) are
prone to popularity bias, which leads to the behavior that long-tail items (i.e., items with
few user interactions) have little chance being recommended. This phenomenon is also
present across different application domains such as movies [2] or music [3].

Our previous work [4] has shown that users interested in beyond-mainstream music
tend to have larger user profile sizes (i.e., individual users show a high(er) number of dis-
tinct artists they have listened to) compared to users interested in mainstream music.
The observation that beyond-mainstream music listeners produce a substantial amount
of digital footprints motivates the need to improve the recommendation quality for this
group. However, although related research has already studied the long-tail recommen-
dation problem (e.g., [5–8]; see Sect. 2 for a more detailed discussion of related work), it
is still a fundamental challenge to understand and identify the characteristics of beyond-
mainstream music and beyond-mainstream music listeners. Additionally, related work [9]
has shown that the group-specific concepts of openness and diversity influence recom-
mendation quality, where openness is defined as across-group diversity (i.e., do users of
one group listen to the music of other groups?) and diversity is defined as within-group
variability (i.e., how dissimilar is the music listened to by users within groups?). Thus, we
are also interested in the correlation between the characteristics of beyond-mainstream
music and music listeners with openness and diversity patterns as well as with recommen-
dation quality. Concretely, our work is guided by the following research question:

RQ: What are the characteristics of beyond-mainstream music tracks and music listeners,
and how do these characteristics correlate with openness and diversity patterns as well as
with recommendation quality?

1https://www.last.fm/

https://www.last.fm/
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To address this research question, we create, provide, and analyze a novel dataset called
LFM-BeyMS, which contains complete listening histories of more than 2000 beyond-
mainstream music listeners mined from the Last.fm music streaming platform. Besides,
our dataset is enriched with acoustic features and genres of music tracks. Using this en-
riched dataset, we identify different types of beyond-mainstream music via unsupervised
clustering applied to the acoustic features of music tracks. We then characterize the result-
ing music clusters using music genres. Then, we assign beyond-mainstream users to the
clusters to further divide the beyond-mainstream users into subgroups. We study how
the characteristics of these beyond-mainstream subgroups correlate with openness and
diversity patterns as well as with recommendation quality measured through prediction
accuracy.

Findings and contributions We identify four clusters of beyond-mainstream music in
our dataset: (i) Cfolk, music with high acousticness such as “folk”, (ii) Chard, high energy
music such as “hardrock”, (iii) Cambi, music with high acousticness and high instrumental-
ness such as “ambient”, and (iv) Celec, music with high energy and high instrumentalness
such as “electronica”. By assigning users to these clusters, we get four distinct subgroups
of beyond-mainstream music listeners: (i) Ufolk, (ii) Uhard, (iii) Uambi, and (iv) Uelec. We
also find that these groups differ considerably with respect to the accuracy of recommen-
dations they receive, where group Uambi gets significantly better recommendations than
Uhard. When relating our results to openness and diversity patterns of the subgroups, we
find that Uambi is the most open but least diverse group, while Uhard is the least open but
most diverse group. This is in line with related research [9], which has shown that open-
ness is stronger correlated with accurate recommendations than diversity. This means that
users are more likely to accept recommendations from different groups (i.e., openness)
rather than varied within a group (i.e., diversity).

Summed up, our contributions are:
• We identify more than 2000 beyond-mainstream music listeners on the Last.fm

platform and enrich their listening profiles with acoustic features and genres of music
tracks listened to (Sects. 3.1–3.4).

• We validate related research by showing that beyond-mainstream music listeners
receive a significantly lower recommendation accuracy than mainstream music
listeners (Sect. 3.5).

• We identify four clusters of beyond-mainstream music using unsupervised clustering
and characterize them with respect to acoustic features and music genres (Sect. 4.1).

• We define four subgroups of beyond-mainstream music listeners by assigning users to
the music clusters and discuss the relationship between openness, diversity, and
recommendation quality of these groups (Sect. 4.2).

• To foster reproducibility of our research, we make available our novel LFM-BeyMS
dataset via Zenodo2 and the entire Python-based implementation of our analyses via
Github.3

We believe that our findings provide useful insights for creating user models and recom-
mendation algorithms that better serve beyond-mainstream music listeners.

2https://doi.org/10.5281/zenodo.3784764
3https://github.com/pmuellner/supporttheunderground

https://doi.org/10.5281/zenodo.3784764
https://github.com/pmuellner/supporttheunderground
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2 Related work
We identify three strands of research that are relevant to our work: (i) modeling of mu-
sic preferences, (ii) long-tail recommendations, and (iii) popularity bias in music recom-
mender systems.

Modeling of music preferences A multitude of factors [12] influences musical tastes and
musical preferences of users. Characteristics of music listeners and music preferences have
been studied in various research domains [13], ranging from music sociology [14] and psy-
chology [15] to music information retrieval and music recommender systems [1]. Stud-
ies on music listening behavior showed that personal traits and long-term music prefer-
ences are correlated as people tend to prefer music styles that align with their personalities
[16, 17]. Furthermore, related work found a relationship between music and motivation
[18], music and emotion [19–22] or both personality and emotion [23]. Openness, a per-
sonality trait from the Five Factor Model [24], has also been shown to positively influence
a user’s preference for music recommendations [9]. Specifically, the authors of [9] found
that people tend to prefer recommendations from different kinds of music (i.e., open-
ness) rather than varied within a specific kind of music (i.e., diversity). Others showed
that familiarity has a positive influence on music preferences [25, 26] and that music pref-
erences may change over time [27]. Another strand of research on modeling users’ music
preferences leverages content features, e.g., acoustic features. It has been shown that the
distribution of acoustic features of a user’s preferred genre substantially influences the
user’s choice of music within other genres [28]. Also, acoustic features have been utilized
to model users’ preferences under different contextual conditions, in order to refine rec-
ommendation quality [29]. Based on tracks’ acoustic features, the authors of [30] identi-
fied several types of music, and subsequently modeled each user by linearly combining
the acoustic features of the music types. In contrast to these works, we focus on using
acoustic features of music tracks for modeling and clustering beyond-mainstream music.
Additionally, we link these beyond-mainstream music clusters to music genres and users
in our Last.fm data sample.

Long-tail recommendations Related research [6, 7] has found that individual music con-
sumption is biased towards popular music and that usage data for less popular music is
scarce. Due to the scarcity problem, items with no or few ratings (i.e., long-tail items) have
little chance of being recommended [5]. As a consequence, users that particularly favor
items with few ratings or interactions are less likely to be recommended those items that
they like [3]. That is problematic because many users, from time to time, prefer niche
music [8]. Therefore, such users are not well served as a result of their preference for
less popular items. That has been attributed to popularity bias, which corresponds to
over-representation of popular items in the recommendation lists [31–33]. Abdollahpouri
et al. [2] studied popularity bias in a dataset of movies (i.e., the MovieLens 1M dataset
[34]) from the user perspective. Their study showed that commonly used recommenda-
tion techniques tend to deliver worse recommendations to users who prefer less popular
movies. In our work [4], we found evidence for popularity bias in a Last.fm dataset and
showed that traditional personalized recommendation algorithms such as collaborative
filtering deliver worse recommendations for consumers of niche music. In the present
work, we aim to gain a deeper understanding of the behavior and preferences of this
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beyond-mainstreaminess user group. Thus, in contrast to existing works in long-tail rec-
ommendations, we focus on the user rather than the item perspective.

Popularity bias in music recommender systems Music recommender systems [1] are cru-
cial tools in online streaming services such as Last.fm, Pandora, or Spotify. They help users
find music that is tailored to their preferences. The basis of music recommender systems
are user models derived from users’ listening behavior, user properties such as personality
(e.g., [35]), content features of music, or hybrid combinations of both, e.g., [36–39]. As dis-
cussed earlier, due to insufficient amounts of usage data for less popular items, many mu-
sic recommendation algorithms do not provide useful recommendations for consumers
of less popular and niche items. As a remedy, in [40], an approach is suggested that di-
vides music consumers into experts and novices according to their long tail distribution
in their playlists. These experts are then converted to nodes with bidirectional links con-
necting all the experts. These links are created to perform link analysis on the graph and to
assign fine-grained weights to songs. The presented approach helps add music from the
long-tail into the recommendation list. In our previous research [41, 42], we have used
a framework [43] that employs insights from human memory theory to design a music
recommendation algorithm that provides more accurate recommendations than collabo-
rative filtering-based approaches for three groups of users, i.e., low-mainstream, medium-
mainstream and high-mainstream users. While the awareness of popularity bias in mu-
sic recommender systems increases (e.g., [44]), the characteristics of music consumers
whose preferences lie beyond popular, mainstream music are still not well understood. In
the present work, we shed light on the characteristics of such beyond-mainstream music
consumers and relate them to openness and diversity patterns as well as recommendation
quality. With this, we aim to provide useful insights for creating novel music recommen-
dation models that mitigate popularity bias.

3 Preliminaries
We investigate the characteristics of beyond-mainstream music listeners in a dataset
mined from Last.fm, a popular music streaming platform. We characterize the tracks in
our dataset with acoustic features. Besides, we compare the recommendation accuracy of
beyond-mainstream music listeners with the one of mainstream music listeners to moti-
vate our subsequent analysis of the characteristics of beyond-mainstream music listeners.

3.1 Acoustic music features
For our analyses, we characterize music tracks using acoustic features that describe the
content of a given track. Following the lines of, e.g., [30, 45–47], we rely on acoustic fea-
tures provided by the Spotify API as a compact characterization of tracks.4 The following
eight features are extracted from the audio signal of a track:

Danceability captures how suitable a track is for dancing and is computed based “on a
combination of musical elements including tempo, rhythm stability, beat strength,
and overall regularity”.

Energy describes the perceived intensity and activity of a track and is based on the dy-
namic range, perceived loudness, timbre, onset rate, and general entropy of a track.

4https://developer.spotify.com/web-api/get-several-audio-features/

https://developer.spotify.com/web-api/get-several-audio-features/
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Speechiness captures the presence of spoken words in a track. High speechiness values
indicate a high degree of spoken words (e.g., an audiobook), whereas medium values
indicate tracks with both music and speech (e.g., rap music). Low values represent
typical music tracks.

Acousticness measures the probability that the given track only contains acoustic instru-
ments.

Instrumentalness quantifies the probability that a track contains no vocals, i.e., the track
is instrumental.

Tempo measures the rate of the track’s beat in beats per minute.
Valence describes the “emotional positiveness” conveyed by a track (i.e., cheerful and eu-

phoric tracks reach high valence values).
Liveness measures the probability that a track was performed live, i.e., whether an audi-

ence is present in the recording.

3.2 Enriched dataset of music listening events
To study characteristics of beyond-mainstream users and their listening preferences, we
create a novel dataset called LFM-BeyMS that contains the required information for such
analyses. We base our work on a dataset gathered from the Last.fm music platform, which
we considerably enrich with the music tracks’ acoustic features (see Sect. 3.1) [48]. Ad-
ditionally, we combine this data with mainstreaminess information of Last.fm users (see
Sect. 3.3) as well as music genre information to identify beyond-mainstream listeners and
music (see Sect. 3.4).

An overview of our new LFM-BeyMS dataset and its data sources is depicted in Fig. 2.
As shown, the starting point for our new dataset is the publicly available LFM-1b dataset5

of music listening information shared by users of the online music platform Last.fm [49].
LFM-1b contains listening histories of 120,322 users; their listening records (or “listening
events”) have been created between January 2005 and August 2014. They sum up to over
1.1 billion listening events (LEs), where each LE is described by an (anonymous) user iden-
tifier, the artist name, the album name, the track name, and the timestamp of the listening
event. Also, the LFM-1b dataset includes demographics of some users (i.e., country, age,
and gender).

To enrich the LFM-1b dataset to suit our task, we utilize our previously created CultMRS
music recommendation dataset [50]. This dataset contains 55,191 users, who have listened
to a total of 26,022,625 distinct tracks, captured by a total of 807,890,921 LEs [48].

To further enrich the dataset with music acoustic features, we gather the acoustic fea-
tures described in Sect. 3.1 for the tracks remaining in the dataset after the filtering de-
scribed above. To this end, we rely on the Spotify API to gather content-based acoustic fea-
tures for each track. Particularly, we search tracks using the 〈track, artist, album〉 triples
extracted from the LFM-1b dataset using the Spotify search API6 to gather the Spotify
track URI of each track by using all three parts of the triple in a conjunctive query. In
total, this allowed gathering 4,326,809 Spotify URIs. For the remainder of the tracks, we
were not able to retrieve a URI. We attribute this to two factors: either the searched track is
not provided by Spotify or the track, artist, and album information cannot be matched to

5http://www.cp.jku.at/datasets/LFM-1b/
6https://developer.spotify.com/web-api/search-item/

http://www.cp.jku.at/datasets/LFM-1b/
https://developer.spotify.com/web-api/search-item/
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Figure 2 Overview of our new LFM-BeyMS dataset and its data sources. We depict the different features, their
origin, and relation, and show the feature groups with the number of contained features in brackets.
LFM-BeyMS contains BeyMS, i.e., data to study the beyond-mainstream user group, and Recommendation, i.e.,
data to conduct recommendation experiments of beyond-mainstream and mainstream music listeners

a Spotify track unambiguously. Subsequently, we use the obtained track URI to query the
acoustic features API,7 which returns the acoustic features of a given track (cf. Sect. 3.1). In
a subsequent cleaning step, we remove all tracks for which the Spotify API did not provide
the full set of acoustic features.

That procedure provides us with a set of 3,478,399 unique tracks and their acoustic fea-
tures. Within the LFM-1b dataset, this amounts to 13.36% of the distinct tracks. Overall,
these account for as much as 48.89% of all listening events (i.e., the tracks listened to by
users) of the LFM-1b dataset. The resulting dataset, now enriched by acoustic music de-
scriptors, comprises a total of approximately 394 million listening events of 55,149 users.
In Table 1 (column “CultMRS”), we provide further descriptive statistics of the CultMRS
dataset. We refine this dataset to create our new LFM-BeyMS dataset (column “BeyMS
in Table 1), which consists of BeyMS, i.e., data to study the characteristics of beyond-
mainstream music listeners, and Recommendation, i.e., data to conduct recommendation
experiments of beyond-mainstream and mainstream music listeners.

3.3 Identifying beyond-mainstream music listeners
To identify beyond-mainstream music listeners, for each user, we compute a mainstreami-
ness score, which is generally defined as the overlap between a user’s individual listening
history and the aggregated listening history of all Last.fm users in the dataset. In this vein,
the mainstreaminess score reflects a user’s inclination to music listened to by the Last.fm
mainstream listeners (i.e., the “average” Last.fm listener in the dataset). In [51], several

7https://developer.spotify.com/web-api/get-several-audio-features/

https://developer.spotify.com/web-api/get-several-audio-features/
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Table 1 Descriptive statistics of the CultMRS dataset and our novel LFM-BeyMS dataset. CultMRS
comprises acoustic features of tracks. LFM-BeyMS is based on CultMRS and consists of BeyMS and
Recommendation. Our analyses of beyond-mainstream music listeners utilize BeyMS and our
recommendation experiments utilize Recommendation, which includes listening events of both users
with beyond-mainstream and mainstream music taste

Item CultMRS [50] LFM-BeyMS (our novel dataset)

BeyMS Recommendation

Users 55,149 2074 4148
Tracks 3,478,399 157,444 1,084,922
Artists 337,840 14,922 110,898
Listening Events (LEs) 394,944,868 4,916,174 16,687,363
Min. LEs per user 1 3 9
Q1 LEs per user 1442 1254 2604
Median LEs per user 5667 2048 3766
Q3 LEs per user 9738 3239 5252
Max. LEs per user 399,210 10,536 11,177
Avg. LEs per user 7161.41 (± 10,326.91) 2371.526 (± 1520.629) 4,022.990 (± 1898.060)

measures of user mainstreaminess are defined. Out of these, we choose the M-global-
R-APC definition since it yielded good results in context-based music recommendation
experiments for the LFM-1b dataset, as evidenced in [51]. The M-global-R-APC measure
approximates a user’s mainstreaminess score by computing Kendall’s τ [52] rank corre-
lation between the user’s vector of artist play counts and the global vector of artist play
counts (aggregated over all users in the dataset). This definition also explains the name of
the measure, where “M” refers to mainstreaminess, “global” indicates the global perspec-
tive, “R” stands for rank correlation, and “APC” refers to artist play counts.

Next, we describe how we identify our beyond-mainstream users via filtering the users
by the number of listening events (see Fig. 3 and Sect. 3.3.1) and by mainstreaminess scores
(see Fig. 4 and Sect. 3.3.2).

3.3.1 Filtering users by the number of listening events
For our study, we select the users so that listeners of different levels of “listening activity”
are equally represented. We conduct a Gaussian kernel density estimation (KDE) [53] on
the distribution of listening events over users to estimate the continuous probability den-
sity function (PDF) [54]. However, KDE estimates the PDF via discrete bins and hence, it is
necessary to approximate the gradient via the principle of finite differences. The gradient
of the PDF helps us identifying regions of increasing or decreasing probability.

Figure 3 shows that two large subsets of users exist that exhibit either very few or an
abundance of listening events. For our analysis, we consider only users who are not in
one of the subsets as mentioned earlier. On the one hand, we exclude users with too little
data available for studying their listening behavior; and on the other hand, we exclude so-
called power listeners who might bias our analyses. Furthermore, such users with a very
high number of listening events are often radio stations, which do not contribute reliable
data to our investigations.

Hence, we define lower and upper bounds regarding the number of users’ listening
events to include in our study, such that the rate of change in terms of the number of
listening events is minimal and stable within these boundaries. That requires the gradient
of the region within the lower and upper bound to be near zero (i.e., ±10–6). By comput-
ing the second-order accurate central differences [55], we obtain an approximation of the
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Figure 3 Distribution of listening events in our set of Last.fm users. We set the lower and upper bound
marked as dashed and dotted lines, respectively based on the gradient, which results in 12,814 users with a
similar number of listening events

Figure 4 Mainstreaminess distribution of the 12,814 users illustrated in Fig. 3. Based on the maximum
gradient, we select an upper bound of 0.097732 to identify the 2074 beyond-mainstream users of the BeyMS
user group

gradient and find the longest cohesive region fulfilling the requirements between a lower
bound of 4688 and an upper bound of 14,787 listening events per user, which leads to
12,814 users.

3.3.2 Filtering users by mainstreaminess scores
Figure 4 illustrates the mainstreaminess distribution of the 12,814 users that we have ex-
tracted based on the number of listening events. Here, mainstreaminess is defined accord-
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ing to the M-global-R-APC definition taken from [51] (explained in Sect. 3.3). By setting an
appropriate upper bound, we aim to exclude mainstream music listeners. In other words,
we aim to set the upper bound to the beginning of the distribution’s bulk, which is mo-
tivated as follows: Firstly, the first inflection point (i.e., maximal gradient) of a Gaussian
distribution is found at E[X]–std(X), where E[X] is the expectation, and std(X) is the stan-
dard deviation of the Gaussian random variable X. Secondly, the first inflection point of a
Gaussian distribution is equivalent to the 15.9-percentile. By setting the mainstreaminess
threshold to this point, we intend to omit the majority of users and hence, only consider the
15.9% of users with the lowest mainstreaminess scores. Utilizing this upper bound on the
mainstreaminess score, we obtain a set of 2074 beyond-mainstream users. Furthermore,
the Gaussian assumption can be strengthened by the observation that the 2074 beyond-
mainstream users represent 16.19% of users. In the remainder of this paper, we refer to
this set of beyond-mainstream music listeners as BeyMS.

3.4 Identifying beyond-mainstream music
We aim to study beyond-mainstream listeners in terms of their music taste. We character-
ize music via its acoustic features, as described in Sect. 3.1, and also investigate genres as
an alternative way to describe a music track via conventional categories. As the LFM-1b
dataset does not contain genre annotations of tracks and the Spotify API only provides
genres on artist level,8 we leverage the tags assigned to each track by Last.fm users to
identify genre annotations. To obtain these tags, we use the respective Last.fm API end-
point.9 After having fetched the tags for each track, we de-capitalize them and remove
all non-alpha-numeric characters. Since not all tags used by Last.fm users correspond
to actual music genres (e.g., the “seenlive” tag is used to indicate that a user has seen an
artist performing this track live), we use a fine-grained music genre taxonomy consisting of
3034 genres that are also utilized by Spotify, which we gather from the EveryNoise service
(2019-07-24).10 Specifically, for each track listened to by any of our BeyMS users, we re-
move all tags that are not part of the EveryNoise genre taxonomy, using a case-insensitive
matching approach.

We note that Last.fm users tend to assign very general genre tags to a large number of
tracks, such as “pop” or “rock”. To remove these coarse-grained genres and to identify fine-
grained beyond-mainstream music genres, we calculate the inverse document frequency
(IDF) [56] metric of our genre-track distribution by treating genres as terms and tracks
as documents, i.e., IDF(g) = log10

|T |
|{t∈T with g∈Gt}| . More precisely, the IDF-score of genre

g is determined by relating the number of all tracks |T | to the number of tracks annotated
with genre g where |Gt| is the set of genres assigned to track t. This way, a coarse-grained
genre receives a small IDF-score, while a fine-grained genre receives a high IDF-score.
Figure 5 shows the IDF-score distribution of the top-100 genres in ascending order (i.e.,
from coarse-grained to fine-grained). Here, we identify two groups of genres, where the
first group consists of 6 genres with small IDF-scores, and the second group consists of
94 genres with high IDF-scores. The visual inspection of Fig. 5 indicates that the lower
bound of 0.90 serves as a discriminant between these two groups of coarse-grained and

8https://developer.spotify.com/documentation/web-api/reference-beta/#endpoint-get-an-artist
9https://www.last.fm/api/show/track.getTopTags
10http://everynoise.com/

https://developer.spotify.com/documentation/web-api/reference-beta/#endpoint-get-an-artist
https://www.last.fm/api/show/track.getTopTags
http://everynoise.com/
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Figure 5 IDF-score distribution of the top-100 genres in ascending order (i.e., from coarse-grained to
fine-grained). The 6 coarse-grained genres below the lower bound of 0.90 are removed from the genre
assignments, i.e., “rock”, “pop”, “electronic”, “metal”, “alternativerock”, “indierock”

fine-grained genres. Consequently, we remove the 6 coarse-grained genres (i.e., “rock”,
“pop”, “electronic”, “metal”, “alternativerock”, “indierock”) from the genre assignments of
our tracks, which leads to 157,444 out of 799,659 tracks listened to by BeyMS users with
at least one remaining genre. In total, these tracks are annotated with 1418 unique genre
identifiers.

We are aware of the fact to our track filtering procedure leads to incomplete listening
profiles of users. Since we rely on genres to describe beyond-mainstream music, these fil-
tering steps are necessary for our study. To ensure that the BeyMS users’ reduced listening
profiles are still representative of their music preferences, we further investigate the con-
sequences of the filtering procedure. Here, we find that a user’s listening history (i.e., the
entirety of a user’s listening events) is reduced to 61% on average. However, we also find
that there are only 62 of the 2074 BeyMS users, for whom the listening history is reduced
to less than 20%. For these users most affected by the filtering, we compare the acoustic
feature distributions of their listened tracks before and after the filtering steps, and find
that filtering only marginally affects the acoustic feature distributions (i.e., average change
in mean = 0.0098 ± 0.0148). This means that the acoustic feature distribution contained
in the user’s profile is highly robust against the filtering. The statistics of BeyMS are sum-
marized in column “BeyMS” in Table 1.

3.5 Recommendations for beyond-mainstream music listeners
In order to compare the recommendation accuracy of recommendations received by the
users of our BeyMS group and by mainstream users, we construct a dataset consisting of
BeyMS’s listening events and the listening events of an equally-sized group of mainstream
users. Therefore, we define the MS user group as 2074 (i.e., the size of our BeyMS group)
randomly-chosen users with a mainstreaminess score that is higher than the upper bound
for low mainstreaminess, identified in Fig. 4. Furthermore, the MS users are also in be-
tween the lower and upper bounds for listening events identified in Fig. 3. As shown in
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Table 1 (column “Recommendation”), the dataset used for the evaluation of recommenda-
tions contains data of 4148 distinct BeyMS and MS users, 1,084,922 distinct tracks, and
16,687,363 listening events.

We use the Python-based open-source recommendation library Surprise11 to compute
and evaluate recommendations. One advantage of using Surprise is that it provides built-
in recommendation algorithms as well as a standardized evaluation pipeline, which en-
hances the reproducibility of our research. Since Surprise is focused on rating prediction,
we formulate our music recommendation scenario also as a rating prediction problem, in
which we predict the preference of a target user u for a target track t. As done in [57], we
model the preference of t for u by scaling the play count (i.e., number of listening events)
of t by u to a range of [1; 1000] using min-max normalization. We perform this normal-
ization on the individual user level to ensure that all users share the same preference value
ranges. Thus, with this method, we ensure that each user’s most listened track has a pref-
erence value of 1000, while their least listened track has a preference value of 1. To ensure
that this min-max normalization procedure does not disrupt the play count distribution
of our users, we compare the original play count distribution with the normalized distri-
bution and find that both distributions are strongly right-skewed. Specifically, we find very
similar distributions for large amounts of our play count data.

We utilize a selection of Suprise’s built-in recommendation methods consisting of
one baseline approach (i.e., UserItemAvg), two neighborhood-based approaches (i.e.,
UserKNN and UserKNNAvg), and one matrix factorization-based approach (i.e., NMF).
Specifically, UserItemAvg predicts the average play count in the dataset by also account-
ing for deviations of u and t, for example, if a user u tends to have more listening events
than the average Last.fm user [58]. UserKNN [11] is a user-based collaborative filtering
approach and is calculated using k = 40 nearest neighbors and the cosine similarity met-
ric, which are the default settings of Surprise. UserKNNAvg is an extension of UserKNN
[11] that also takes the average rating of target user u into account. Finally, NMF, i.e., non-
negative matrix factorization [10], is calculated using 15 latent factors, which is the default
parameter in the Surprise library. As shown in our previous work [4], NMF is also capable
of recommending non-popular items from the long tail and should therefore especially be
of interest for our beyond-mainstream recommendation setting.

We use Surprise’s default parameters and refrain from performing any hyperparame-
ter tuning since we are only interested in assessing (relative) performance differences be-
tween the two user groups BeyMS and MS, and not in outperforming any state-of-the-art
algorithm. This is also the reason why we focus on traditional algorithms instead of in-
vestigating the most recent deep learning architectures, which would also require a much
higher computational effort.

The resulting mean absolute error (MAE) results can be observed in Table 2 (and cor-
respond to the ones already shown in Fig. 1). We favor MAE over the commonly used
root mean squared error (RMSE) due to several pitfalls, especially regarding the com-
parison of groups with different numbers of observations [59]. Here, we perform 5-fold
cross-validation leading to 5 different 80/20 train-test splits and average the MAE over
the 5 folds. NMF clearly outperforms UserItemAvg as well as the two neighborhood-
based methods (i.e., UserKNN and UserKNNAvg) both for the two user groups (see

11http://surpriselib.com/

http://surpriselib.com/
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Table 2 Mean absolute error (MAE) results for the two user groupsMS and BeyMS of different
mainstreaminess and a selection of standard recommendation algorithms. A one-tailed
Mann–Whitney-U test (α = 0.0001) provides significant evidence, indicated by ∗∗∗ , that all algorithms
perform worse on BeyMS than onMS in terms of MAE. Furthermore, NMF (as shown in bold)
outperforms the other three approaches UserItemAvg, UserKNN and UserKNNAvg

User group UserItemAvg UserKNN UserKNNAvg NMF

BeyMS 63.4608∗∗∗ 71.6694∗∗∗ 67.5770∗∗∗ 57.7703∗∗∗
MS 61.2562 68.4894 63.3985 54.8182
Overall 62.2315 69.8962 65.2469 56.2492

rows “BeyMS” and “MS”) separately and overall without distinguishing between the user
groups (see row “Overall”). Additionally, we conduct a one-tailed Mann–Whitney-U test
(α = 0.0001), where we define the null-hypothesis as the MAE for MS being larger than or
equal to the MAE for BeyMS. Results marked with ∗∗∗ indicate that the null-hypothesis was
rejected for every fold. Thus, all algorithms (including NMF) provide a significantly larger
error for BeyMS than for MS. In other words, recommendation quality is significantly bet-
ter for users with mainstream taste than for users who prefer beyond-mainstream music
across all recommendation approaches.

These initial results underpin the need to study the characteristics of the BeyMS user
group that receives worse recommendations. The corresponding experiments are pre-
sented in the next section.

4 Characteristics of beyond-mainstream music and listeners
We identify the types of beyond-mainstream music using unsupervised clustering and
characterize these types with respect to acoustic features and music genres. Besides, we
detect subgroups of beyond-mainstream music listeners by assigning users to these clus-
ters and evaluate the recommendation quality obtained for these subgroups. Finally, we
discuss the recommendation quality with respect to openness and diversity. For this, we
relate to the definitions given by [9]:

Openness is the across-groups diversity (or categorical diversity) and describes if users of
one group also listen to the music of other groups.

Diversity is the within-groups diversity (or thematic diversity) and describes the dissim-
ilarity of music listened to by users within groups.

Based on the findings of [9], we would expect that subgroups with high openness should
receive more accurate recommendations than subgroups with high diversity.

4.1 Clustering and characterizing beyond-mainstream music
To study the different types of music listened to by the users in our BeyMS group, we
conduct a cluster analysis. Specifically, we cluster the 157,444 tracks listened to by BeyMS
users, where each track is described by the eight acoustic features danceability, energy,
speechiness, acousticness, instrumentalness, tempo, valence, and liveness (see Sect. 3.1).
We scale the value ranges of these features to [0, 1] using min-max normalization. The
use of latent representations of musical elements such as tracks was shown to be efficient
in the area of music information retrieval [30, 60, 61]. Furthermore, for visually analyzing
the obtained music clusters and decreasing computation time, we favor a reduction of
dimensionality to two dimensions.

We conduct experiments with a broad body of dimensionality reduction methods, i.e.,
linear and nonlinear principal component analysis (PCA) [62], locally linear embedding
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[63], multidimensional scaling [64], Isomap [65], spectral embedding [66], t-distributed
stochastic neighbor embedding (t-SNE) [67] and uniform manifold approximation and
projection (UMAP) [68]. We visually inspected the 2-dimensional feature spaces created
by these methods with regards to the clustering quality, and we obtained the visually most
homogeneous results with UMAP. Moreover, UMAP has already been successfully used
in the music domain [30] and thus, we use it for the remainder of our experiments. Specif-
ically, we utilize the open-source implementation of UMAP [69], which requires four pa-
rameters: (i) the distance metric M in the input space, (ii) the number of latent dimensions
D, (iii) the minimum distance of points in the latent space dmin, and (iv) the number of
neighbors of a point N . Based on experimentation and related literature (e.g., [69]), we set
the distance metric M to the Euclidean distance, the number of latent dimensions D to 2,
the distance dmin to 0.1 and the number of neighbors N to 15.

In a next step, we perform clustering on the dimensionality-reduced acoustic features
of tracks. Again, we conduct experiments with various clustering methods, i.e., DBSCAN
[70], K-Means [71], Gaussian mixture models [72], affinity propagation [73], spectral clus-
tering [74], hierarchical agglomerative clustering [75], OPTICS [76] and HDBSCAN∗ [77].
Here, we obtain the best results with respect to cluster cohesion and separation using
HDBSCAN∗. Furthermore, HDBSCAN∗ was also already used by related work to clus-
ter music items [78]. We employ the open-source implementation of HDBSCAN∗ [79]
that requires four parameters: (i) the minimum cluster size smin that defines the mini-
mum size of a group of points to consider a cluster, (ii) the minimum number of samples
in the neighborhood of a core point Nmin, which quantifies how conservative the clus-
tering is, (iii) ε, which enables the recovery of DBSCAN clusters if the smin value is not
reached, and (iv) the scaling of the distance α, which is another measure of the clustering’s
conservativeness. In detail, α scales the distance between two points, which determines
whether these points are merged into a cluster. This scaling is used in the construction of
HDBSCAN∗’s hierarchy of clusterings. Again, we find the best-suited parameters based
on experimentation and related literature (e.g., [77]). Specifically, we require each cluster
to comprise a sufficiently large number of tracks to increase the level of significance of
our subsequent experiments. We expect the existence of very small music clusters and
thus, search for the optimal value of the minimal cluster size smin in the search space of
{1000; 1025; . . . ; 1475; 1500}, where we obtain the best results with respect to the within-
cluster variance for smin = 1375. Furthermore, tightly packed clusters without any contri-
bution of noise should be favored. In other words, all points within a cluster should be
within the neighborhood of at least one core point. Thus, we set the minimal number of
samples in the neighborhood Nmin = smin = 1375. The remaining two parameters are set
to their default values, i.e., ε = 0 and α = 1.

Figure 6 shows the results of the clustering process using HDBSCAN∗ and UMAP for
the 2-dimensional mapping. This process leads to four music clusters. Here, the green
cluster (hatch: +) is the largest one with 92,798 tracks, followed by the pink cluster (hatch:
x) with 30,379 tracks and the blue cluster (hatch: /) with 12,148 tracks. The smallest cluster
is the orange one (hatch: o) as it contains 7629 tracks. The remaining 14,490 of our 157,444
BeyMS tracks have not been assigned to a cluster and thus, will not be included in further
analyses and interpretations. Next, we describe how we name these clusters based on their
music genre distributions.
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Figure 6 Music clustering results obtained with HDBSCAN∗ and UMAP for the 2-dimensional mapping. The
outputs are four clusters with the following cluster sizes: 12,148 (blue, hatch: /), 92,798 (green, hatch: +), 7629
(orange, hatch: o) and 30,379 (pink, hatch: x) tracks. 14,490 of our 157,444 BeyMS tracks have not been
assigned to a cluster

4.1.1 Genre distributions
In Fig. 7, we illustrate the top-10 genres of the four music clusters. For this, we refer to
the genre IDF-scores presented in Sect. 3.4 and weight each genre assigned to a track in a
cluster with its corresponding IDF-score. For example, if a genre with an IDF-score of 1.4
is assigned to 1000 tracks in a cluster, it is visualized as an aggregated genre IDF-score of
1400 in the corresponding plot of Fig. 7. Based on the genre distributions, we label each
cluster according to its top genre.

With respect to the blue cluster (hatch: /) in Plot (a), we find top genres such as “folk” and
“singersongwriter”, which typically reflect music with high acousticness. In the remainder
of this paper, therefore, we refer to this cluster as Cfolk. The top genres of the green clus-
ter (hatch: +) in Plot (b) are typical high energy music genres such as “hardrock”, “punk”,
“poprock”, and “hiphop”. Based on this, we name this cluster Chard.

For the orange cluster (hatch: o) in Plot (c), we find genres that reflect music with high
acousticness and high instrumentalness such as “ambient”, “experimental”, “newage”, and
“postrock”. As “ambient” clearly dominates the genre distribution for this cluster, we name
this cluster Cambi. Similarly to Cfolk, this cluster contains music with high acousticness; yet,
while Cfolk is characterized by low instrumentalness music, Cambi is characterized by a high
level of instrumentalness. Finally, Plot (d) shows the genre distribution of the pink cluster
(hatch: x) with “electronica” as the top genre, which leads to the name Celec for this cluster.

Thus, both, Celec and Chard, consist of high energy music but in contrast to Chard, Celec

also comprise high instrumentalness values. This also makes sense when looking at other
top genres of Celec such as “deathmetal” and “blackmetal” where guttural vocal techniques
are often mistakenly classified as another type of instrument [80].

To compare the genre distributions among the four music clusters, we illustrate the rela-
tive genre frequency distribution of the clusters in Fig. 8. The relative frequency of a genre
g depicts the fraction of listening events of tracks within a cluster c that are annotated
with g . Here, we only show genres with a minimum relative genre frequency of 0.1. We
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Figure 7 Top-10 genres of the four music clusters C1–C4 according to the aggregated genre IDF-scores. We
name the clusters according to the top genre, i.e., (a) blue (hatch: /) → Cfolk (“folk”), (b) green (hatch: +) →
Chard (“hardrock”), (c) orange (hatch: o) → Cambi (“ambient”), and (d) pink (hatch: x) → Celec (“electronica”)

Figure 8 Relative genre frequency distribution of the four music clusters. While there are dominating genres
in Cfolk and Cambi , the genre distribution is more diverse in Chard and Celec

see that there are clearly dominating genres in Cfolk and Cambi, whereas the genre distri-
butions in Chard and Celec are more evenly distributed. When relating this finding to the
findings of Fig. 7, we clearly see that the results correspond to each other: Chard and Celec

contain a more diverse genre spectrum (e.g., “hardrock” and “hiphop” are both part of
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Chard’s top genres) than Cfolk and Cambi (e.g., in Cambi’s top genres, we find “ambient” and
“darkambient”).

4.1.2 Acoustic feature distributions
To understand the musical content of these four music clusters, we analyze the acoustic
feature distributions of the four music clusters using boxplots in Fig. 9. This visualization
does not show any obvious differences with respect to danceability and tempo among the
four clusters. For the acoustic features energy, speechiness, acousticness, valence, and live-
ness, there are similar values for the cluster pairs Cfolk and Cambi, and Chard and Celec. We
observe differences between these two cluster pairs with respect to energy and acoustic-
ness. While Chard and Celec provide high energy values and small acousticness values, Cfolk

and Cambi feature small energy values and high acousticness values.
In contrast, for instrumentalness, we see similar values for the cluster pairs Cfolk and

Chard as well as for Cambi and Celec. We observe very high values for Cambi and Celec, and
very small values for Cfolk and Chard. This difference is also visible in Fig. 6 in the form of
the gap between Cfolk and Chard on the left, and Cambi and Celec on the right.

Summing up, in Cfolk, we find music with low energy, high acousticness, and low instru-
mentalness; Chard contains music with high energy, low acousticness, and low instrumen-
talness; in Cambi, we observe music with low energy, high acousticness, and high instru-

Figure 9 Distribution of the eight acoustic features for the four music clusters. While the clusters do not show
obvious differences with respect to danceability and tempo, we find large differences with respect to energy,
acousticness and instrumentalness



Kowald et al. EPJ Data Science           (2021) 10:14 Page 18 of 26

mentalness; and in Celec, we find high energy, low acousticness, and high instrumentalness.
Thus, these findings are in line with the genre distributions presented in Fig. 7.

4.2 Assigning and studying beyond-mainstream music listeners
In the next step, we assign the 2074 BeyMS users to the four music clusters to categorize
them into four distinct beyond-mainstream subgroups for further analyses.

For each user u, we count the number of listening events LEu,c that u has contributed
to the tracks in each cluster c, where c ∈ C = {Cfolk, Chard, Cambi, Celec}. Then, we assign u
to the cluster c for which the number of contributed listening events LEu,c is the highest.
However, because we have varying cluster sizes, the probability of u listening to a track t
of the two larger clusters Chard and Celec is much higher than for the two smaller clusters
Cfolk and Cambi, although Cfolk and Cambi could be more representative choices for u. Thus,
similar to the IDF distribution of genres (see Fig. 5), we take advantage of the IDF scoring
to reduce the influence of the larger clusters and to assign higher weights to the smaller
clusters. Specifically, these cluster IDF-scores are given by IDF(c) = log10

|T |
|{t∈T with ct}| , i.e.,

by relating the number of all tracks |T | to the number of tracks in cluster c where ct is the
music cluster assigned to track t. That lets us define the user–cluster weight wu,c for user
u and cluster c as wu,c = IDF(c) · LEu,c.

Consequently, users are assigned to the highest weighted music cluster and thus, a sub-
group Uc for cluster c is given by Uc = {u ∈ U : arg maxc∈C(wu,c)}.

Out of the 2074 BeyMS users, we can assign 2073 users to these subgroups. Thus, only 1
user listened to tracks not contained in any cluster in Fig. 6. Similar to the naming scheme
of music clusters, we label the subgroups according to the name of their assigned music
cluster. Hence, we obtain four subgroups Ufolk, Uhard, Uambi, and Uelec.

Table 3 provides basic descriptive statistics of these four resulting subgroups. Here, Uhard

is the largest subgroup with |U| = 919 users, followed by Uelec with |U| = 642 users, Ufolk

with |U| = 369 users, and Uambi with |U| = 143 users. The differences with respect to the
number of users also correspond to the differences regarding the number of artists |A|, the
number of tracks |T |, and the number of listening events |LE| contained in the clusters. In
the case of the number of genres |G|, this differs slightly because the users in the smaller
Uambi cluster listen to more genres (i.e., 918) than the bigger Ufolk cluster (i.e., 811). This
indicates that the users in Uambi listen to a broader set of music than the users in Ufolk.

Considering the average number of listening events per user (i.e., |LEu|) and the average
number of tracks per user (i.e., |Tu|), we see that, while there is little difference between
Uhard and Uelec with respect to |LEu|, |Tu| is much higher for Uelec (i.e., 670.402) than for
Uhard (i.e., 557.470). This indicates that, although the number of listening events is nearly
the same, users of Uelec tend to listen to a wider set of tracks than users of Uhard. With

Table 3 Descriptive statistics of the four subgroups. Here, |U| is the number of users, |A| is the
number of artists, |T | is the number of tracks, |LE| is the number of listening events, |G| is the number
of genres, |LEu| is the average number of listening events per user, |Tu| is the average number of
tracks per user and Age is the average age (along with the standard deviation) of users in the group

Subgroup |U| |A| |T | |LE| |G| |LEu| |Tu| Age (std.)

Ufolk 369 9559 72,663 702,635 811 1904.160 549.650 27.599 (± 10.369)
Uhard 919 11,966 107,952 2,150,246 1274 2339.767 557.470 23.867 (± 8.912)
Uambi 143 6869 39,649 224,327 918 1568.720 473.308 29.571 (± 14.138)
Uelec 642 11,814 105,907 1,416,354 1005 2206.159 670.402 24.639 (± 7.886)
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Figure 10 Radar plot illustrating the contribution of each music cluster to a subgroup. While the weight
distribution of Uhard and Uelec is rather narrow, it is more broad in case of Ufolk and Uambi suggesting that
these groups are more open to music outside the own music cluster

respect to the average age of the users Age, we see that the users of Ufolk and Uambi are
the oldest ones, and users of Uhard and Uelec are the youngest ones. However, it is worth
noting that the group with the highest average age (i.e., Uambi) also shows by far the highest
standard deviation of age (i.e., 14.138 years).

In Fig. 10, we show the contribution of each music cluster to each subgroup in the form
of a radar plot. For this, we use the user-cluster weights wu,c introduced before and cal-
culate the average weight over all users in cluster c. One consequence of the IDF scoring
applied to wu,c is that the weight contributions of a user group to the four clusters does
not sum up to 1, which eventually influences the interpretation of the values shown in
Fig. 10. However, in return, these values account for the varying cluster sizes and can also
be interpreted as preference weights for a user group towards a specific music cluster.

We observe that the weight distribution of the two larger subgroups Uhard and Uelec

is rather narrow, which indicates that these users do not listen to many tracks of other
clusters. Contrary to that, the weights of the two smaller subgroups Ufolk and Uambi are
more broadly distributed over the four music clusters. This suggests that users of Ufolk

and Uambi are more open to music outside of their own music cluster than users of Uhard

and Uelec.

4.2.1 Correlation of music clusters and beyond-mainstream subgroups
To better understand the correlations and connections between the music clusters and
subgroups, we plot the Pearson correlation matrix of the four music clusters as a heatmap
in Fig. 11. Here, we represent each music cluster c by a 2073-dimensional vector (i.e., one
entry for each user) consisting of the user–cluster weights wu,c, introduced before. Each
element in the matrix is then calculated using the Pearson correlation measure based on
these cluster vectors. For example, if there is a positive correlation between two clusters,
we assume that a user who enjoys music from the one cluster likely also enjoys music
from the other cluster. This can give us also an indication of the openness of a subgroup
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Figure 11 Pearson correlation matrix of the four
music clusters. While Chard has solely negative
correlations with all other clusters, and thus,
listeners of Chard seem to be the most closed
subgroup, Cambi has positive correlations with Cfolk
and Celec , and thus, listeners of Cambi seem to be the
most open subgroup

Figure 12 Boxplots showing the average pairwise user similarity of the four subgroups using the cosine
similarity calculated on the users’ genre distributions. While the users in Uhard and Uelec exhibit a more diverse
listening behavior, users in Ufolk and Uambi tend to listen to more similar, i.e., less diverse, music genres

for music mainly listened to by other subgroups. Specifically, for Cfolk, we see a positive
correlation between Cfolk and Cambi, and a negative correlation between Cfolk and both,
Chard as well as Celec. Users listening to the music of Chard seem to represent the most
closed subgroup as Chard because it solely has negative correlations with all other clusters,
especially with Cambi and Celec. In contrast, users listening to the music of Cambi seem
to represent the most open subgroup as Cambi has positive correlations with two other
clusters, i.e., Cfolk and Celec. The fourth cluster, Celec, is negatively correlated with Cfolk

and especially with Chard, and positively correlated with Cambi. These results are also in
line with the ones shown in Fig. 10, in which we identify the users of Uambi as more open
music listeners than the ones of Uhard.

In order to relate the openness of the subgroups to the diversity of the users within the
subgroups, we calculate the average pairwise user similarity using the cosine similarity
metric computed on the users’ genre distributions, i.e., number of listening events per
genre. Figure 12 shows the resulting boxplots for the four identified subgroups (i.e., Cfolk,
Chard, Cambi, and Celec). Figure 12 shows that users in Uhard and Uelec have a rather small av-
erage pairwise user similarity and, thus, exhibit a more diverse listening behavior, whereas
users in Ufolk and Uambi tend to listen to more similar music genres and, thus, have a nar-
row listening behavior within the group. Summed up, we find pronounced differences with
respect to openness and diversity across the subgroups. Although Uambi is the most open
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subgroup (i.e., also listens to music of other subgroups), it is also the least diverse subgroup
(i.e., the users within the group listen to very similar music). That observation is in line
with what is shown in Figs. 7, and Fig. 8. Here, we see that Cambi, i.e., the most tightly con-
nected music cluster to Uambi, contains the dominating genre “ambient” as well as genres
that are strongly associated with this dominating genre (e.g., “darkambient”). For Uhard, we
observe the opposite. While it is the least open subgroup, it is also the most diverse one
(e.g., it contains “hardrock” as well as “hiphop” listeners).

4.2.2 Recommendations for beyond-mainstream user subgroups
In Sect. 3.5, we have shown that the recommendation accuracy of four personalized rec-
ommendation algorithms is significantly worse for BeyMS users than for MS users. Now,
we extend this analysis and evaluate the recommendation accuracy of these algorithms for
the four subgroups (i.e., Ufolk, Uhard, Uambi, and Uelec).

Table 4 shows our results with respect to the mean absolute error (MAE). Additionally,
we analyze these results with respect to statistically significant differences in Table 5 by
performing ANOVA (α = 0.01) and a subsequent Tukey-HSD test (α = 0.05). Here, we
report pairwise differences as significant (marked with ∗∗), if both ANOVA and Tukey-
HSD were significant across all five folds (see Sect. 3.5 for details on the experimental
setup).

We see that among all algorithms, the significantly worst accuracy results (i.e., the high-
est MAE scores) are achieved for the Uhard subgroup. Next, Ufolk, Uambi and Uelec reach
significantly better (i.e., lower MAE scores) than Uhard for all algorithms. However, there
is no statistically significant difference between the recommendation accuracy of Ufolk and
Uelec. The overall best accuracy results (i.e., lowest MAE scores) are reached for the Uambi

subgroup. These results are also statistically significant when compared with the other
subgroups for the NMF algorithm. NMF also gives the overall best accuracy results for

Table 4 Mean absolute error (MAE) measurements for the four subgroups and four personalized
recommendation algorithms. NMF (in bold) outperforms all other algorithms for all subgroups.
Among the subgroups, the best accuracy results (i.e., lowest MAE scores) are reached by Uambi, while
the worst accuracy results (i.e., highest MAE scores) are reached by Uhard. To facilitate comparison, we
also show the MAE measurements for the BeyMS andMS user groups

Subgroup UserItemAvg UserKNN UserKNNAvg NMF

Ufolk 63.2143 70.3049 67.4406 57.2278
Uhard 65.1464 73.1949 69.2855 59.6887
Uambi 60.5558 69.8315 65.5708 54.2073
Uelec 62.2894 71.0387 66.1499 56.6209
BeyMS 63.4608 71.6694 67.5856 57.7703
MS 61.2562 68.4894 63.3985 54.8182

Table 5 Statistically significant differences between pairs of subgroups, as determined by ANOVA
(α = 0.01) and a subsequent Tukey-HSD test (α = 0.05)

Subgroup UserItemAvg UserKNN UserKNNAvg NMF

Ufolk Uhard Uambi Uelec Ufolk Uhard Uambi Uelec Ufolk Uhard Uambi Uelec Ufolk Uhard Uambi Uelec

Ufolk
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Uhard
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Uambi
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

Uelec
∗∗ ∗∗ ∗∗ ∗∗ ∗∗
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Figure 13 Comparison of the mean absolute error
(MAE) scores reached by NMF for the four
subgroups with the ones reached by NMF for BeyMS
(black dashed line) andMS (gray dashed line). While
specific subgroups (i.e., Uhard) are treated in an
unfair way by recommendation algorithms, others
(i.e., Uambi) are not

all subgroups, which is in line with our results presented in Sect. 3.5 and in our previous
work [4].

Furthermore, we find a relationship between openness, diversity, and recommendation
quality. Here, Uhard is the least open but most diverse subgroup and gets the worst rec-
ommendations, while Uambi is the most open but least diverse subgroup and gets the best
recommendations. This is in line with the findings of [9], who have shown that users are
more likely to accept recommendations from different groups (i.e., openness) rather than
varied within a group (i.e., diversity). Thus, we find a relationship between the quality of
recommendations provided to beyond-mainstream music listeners and openness as well
as diversity patterns of these users.

Finally, in Fig. 13, we visually compare the MAE scores reached by the best performing
approach NMF for the four subgroups. Additionally, we depict the MAE score for BeyMS
as a black dashed line and the MAE score for MS as a gray dashed line. We see that Uhard

reaches worse results than BeyMS while Ufolk and Uelec reach slightly better results than
BeyMS. Interestingly, Uambi not only reaches better results than BeyMS but also better
results than MS. Although this improvement over MS is not statistically significant (ac-
cording to a one-tailed Mann–Whitney-U test with α = 0.0001), it shows that there is a
large variety among BeyMS users, where specific subgroups (i.e., Uhard) are disadvantaged
in terms of recommendation accuracy by recommendation algorithms while others (i.e.,
Uambi) are not.

5 Conclusions and future work
In this paper, we shed light on the characteristics of beyond-mainstream music and music
listeners. As our first contribution, we identified 2074 beyond-mainstream music listeners
(i.e., BeyMS) in the Last.fm platform, and subsequently created a novel dataset called LFM-
BeyMS based on the listening histories of these users. We further enriched this dataset
with (i) acoustic features of music tracks gathered from Spotify, and (ii) genre informa-
tion of tracks derived from Last.fm tags and matched with the Spotify microgenre taxon-
omy. Additionally, for reasons of comparability, LFM-BeyMS contains data of 2074 Last.fm
users listening to mainstream music. Using this dataset, as our second contribution, we
validated related research by showing that beyond-mainstream music listeners receive a
significantly lower recommendation accuracy than mainstream music listeners by four
standard recommendation algorithms (i.e., UserItemAvg, UserKNN, UserKNNAvg and
NMF).

As our third contribution, we applied the clustering algorithm HDBSCAN∗ on the
acoustic features of tracks listened by BeyMS and identified four clusters of beyond-
mainstream music: (i) Cfolk, music with high acousticness such as “folk”, (ii) Chard, high
energy music such as “hardrock”, (iii) Cambi, music with high acousticness and instrumen-
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talness such as “ambient”, and (iv) Celec, music with high energy and instrumentalness such
as “electronica”.

As our fourth contribution, we mapped these clusters to our BeyMS users, which led
to four beyond-mainstream subgroups: (i) Ufolk, (ii) Uhard, (iii) Uambi, and (iv) Uelec. We
analyzed these subgroups with respect to their openness (i.e., across-groups diversity—
do users of one group listen to music of other groups?) and diversity (i.e., within-groups
diversity—how dissimilar is the music listened to by users within groups?). Here, we found
large differences between Uhard and Uambi. Although Uhard is the most closed subgroup
(i.e., users do not listen to music of other subgroups), it is also the most diverse subgroup
(i.e., users listen to a diverse set of genres such as “hardrock” and “hiphop”). For Uambi, we
get opposite results: while it is the most open subgroup (i.e., users listen to music of other
subgroups as well), it is also the least diverse one (i.e., the users within the group listen to
very similar music such as “ambient” and “darkambient”). We related these characteristics
of the subgroups to the recommendation quality of the four recommendation algorithms
UserItemAvg, UserKNN, UserKNNAvg and NMF. Here, we found that Uhard got music
recommendations with lowest accuracy, while Uambi got music recommendations with
highest accuracy. This is in line with related research [9], which has shown that openness
is stronger correlated with accurate recommendations than diversity. Uambi even received
better recommendations than the group of mainstream music listeners. This result high-
lights that there are large differences between the subgroups of beyond-music listeners.
Finally, to foster reproducibility of our research, we provide our novel LFM-BeyMS dataset
via Zenodo as well as our source code via Github.

We believe that our findings provide useful insights for creating user models and rec-
ommendation algorithms that better serve beyond-mainstream music listeners. As it was
shown in [4], beyond-mainstream music listeners tend to have larger user profile sizes than
users interested in mainstream music, which means that they provide a substantial amount
of listening interaction data for services such as Last.fm and Spotify. We assume that im-
proving the recommendation quality for this active user group also leads to another effect,
namely a more prominent exposure of (long-tail) music artists due to a better-connected
recommendation network [81]. We leave such investigations to future work.

Limitations Despite the merits of this work, we are aware of its limitations. The first lim-
itation we recognize is that our analyses are based on a sample of the Last.fm community.
The extent to which their listening behavior is representative of the Last.fm community at
large, or similar music streaming communities such as Spotify, needs further investigation.

Next, since we conducted a comparative study of the accuracy of recommender sys-
tems algorithms—and were therefore not interested to beat state-of-the-art algorithms—
we focused on traditional algorithms (e.g., KNN-based collaborative filtering) instead of
investigating the most current deep learning architectures, which would also require a
much higher computational effort. Furthermore, an award-winning-paper by Dacrema et
al. [82] has recently shown that traditional algorithms are able to outperform almost all
deep learning architectures.

Future work While our work serves as a first milestone towards better characterizing
beyond-mainstream music and listeners of such music, future work should focus on user
modeling techniques to individually target the different subgroups, for example by inte-
grating knowledge about openness and diversity. With respect to analyzing openness and
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diversity of users and user groups, we would also like to work on a more formal definition
of these dimensions, which would not only allow us to measure them more precisely but
also to integrate them into the recommendation calculation process.

Additionally, since previous research has shown that the listener’s cultural background
impacts the quality of music recommendations [48], we plan to compare the cultural and
socioeconomic aspects of beyond-mainstream and mainstream music listeners. We plan
to employ these aspects by means of Hofstede’s cultural dimensions [83] and the World
Happiness Report [84].

Finally, another avenue for future work is the research in the area of fair music recom-
mender systems. Here, we plan to build user models that are capable of accounting for the
complex characteristics of beyond-mainstream music listeners presented in this paper.
While we believe that more specialized user models could help to provide better recom-
mendations for users who currently receive worse recommendations (e.g., the Uhard sub-
group identified in this paper), we also aim to highlight that such user models still need
to be generalizable to avoid any unfair treatment of other users. Hence, future research
should work on achieving a specialization-generalization trade-off in music recommender
systems. We hope that our open LFM-BeyMS dataset as well as our source code will be of
use to the scientific community for subsequent analyses.
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