

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

PRE-PRINT VERSION

Yousfi, Alaaeddine, Bauer, Christine, Saidi, Rajaa, & Dey, Anind K. (2016). uBPMN:
A BPMN extension for modeling ubiquitous business processes. Information and
Software Technology, 74, Elsevier, pp 55-68. DOI: 10.1016/j.infsof.2016.02.002

The final publication is available at Elsevier through
http://dx.doi.org/10.1016/j.infsof.2016.02.002

http://dx.doi.org/10.1016/j.infsof.2016.02.002

uBPMN: A BPMN Extension for Modeling Ubiquitous Business Processes

Alaaeddine YOUSFIa,b, Christine BAUERc, Rajaa SAIDIa,d, Anind K. DEYb

aLRIT, Research Unit Associated to the CNRST (URAC 29), FSR, Mohammed V University, Rabat, Morocco
bHuman-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA

cUniversity of Cologne, Department of Information Systems and Information Management, Cologne, Germany
dINSEA, Rabat, Morocco

Abstract

Context: Business Process Model and Notation (BPMN) is the de facto standard for business process modeling. It was developed
by the Object Management Group with support of the major organizations in the fields of software engineering and information
systems. Despite its wide use, when it comes to representing ubiquitous business processes, this business process modeling language
is lacking.
Objective: To address BPMN’s deficiency in representing ubiquitous business processes, we extend it and present uBPMN (or
ubiquitous BPMN).
Method: First, we analyze the modeling requirements for representing ubiquitous business processes. Based on the requirements,
we conservatively extend the Meta-Object Facility meta-model and the XML Schema Definition of BPMN as well as extend the
notation. The extension, that we call uBPMN follows the same outline as set by the Object Management Group for BPMN.
Results: The proposed uBPMN not only allows for modeling ubiquitous business processes but also lays the groundwork for
potentially deploying a variety of ubiquitous computing technologies. We illustrate all of uBPMN’s capabilities and benefits with
real-life examples.
Conclusion: uBPMN extends BPMN v2.0 with new capabilities to deal with ubiquitous computing technologies.

Keywords: Business Process Modeling, Ubiquitous Business Process, Ubiquitous Computing, uBPMN

1. Introduction

Nearly a decade after its o�cial introduction in May 2004,
the Business Process Model and Notation (BPMN) gained the
upper hand in Business Process Modeling [8], both in academia
and business. As of June 2015, it was referenced in more
than 24000 scientific publications and 300 patents as listed in
Google Scholar/Patents. When compared to other business pro-
cess modeling languages, numerous studies (e.g., [48, 41]) em-
phasize that BPMN may be considered as the de facto standard
for business process modeling. Further still, it is supported by
big names in the fields of information systems and software
engineering (see Section 6.3 in [42]). Last but not least, its
groundbreaking features motivated the appearance of many en-
gines supporting it such as Activiti [47], jBPM [57] and Oracle
BPM [22].

Since its first release as v1.0 in May 2004, BPMN underwent
three updates. Each update was introduced to allow BPMN
to represent new process characteristics that were not covered
by the version that preceded. The changes are thoroughly de-
scribed by the Object Management Group (OMG) in each new
release (e.g., changes from v1.2 to v2.0 are available in [42,
p.479]). Now, since its latest release as BPMN v2.0 in January

Email addresses: aeyousfi@cmu.edu (Alaaeddine YOUSFI),
bauer@wim.uni-koeln.de (Christine BAUER), r.saidi@insea.ac.ma
(Rajaa SAIDI), anind@cs.cmu.edu (Anind K. DEY)

2011, Business Process Management has evolved a lot [15, 24].
Particularly, many new process characteristics emerged that
BPMN v2.0 cannot represent. For instance:

• Example 1: The highway toll can be paid on the fly using
the RFID (Radio Frequency IDentification) tag on the car
windshield without stopping at any toll plaza. The prob-
lem here is that automatic identification and data capture
of the RFID tag and content cannot be appropriately rep-
resented by BPMN v2.0.

• Example 2: The taxi is assigned to the customer based
on her/his current location. In this business rule, a mecha-
nism to collect and quantify the current location of the user
and assign the most appropriate taxi to her/him cannot be
represented by BPMN v2.0.

• Example 3: After capturing a sample of the music play-
ing, the song is identified and added to the customer’s mu-
sic order. Here, the problem is that BPMN v2.0 cannot
accurately describe audio collection and sampling.

BPMN, in its latest release, o↵ers five types of core model-
ing elements; Flow Objects, Data Objects, Connecting Objects,
Swimlanes and Artifacts [42]. When tackling the aforemen-
tioned examples using the notation, many challenges arise. As
such, what Flow Objects, Data Objects, Connecting Objects,
Swimlanes and Artifacts can be used to accurately cope with

Preprint submitted to Information and Software Technology February 10, 2016

the three business rules from the examples? One may suggest
using the existing core modeling elements of BPMN v2.0. For
example, one idea would be to represent these new capabilities
with Artifacts, such as Text Annotations (also core elements
of BPMN v2.0). While this may appear to be a viable solu-
tion from a modeling and design point of view, severe problems
arise when it comes to Verification and Validation (V&V) [64]
of the process models, as Text Annotations cannot be validated.
Data Objects were introduced to deal with static data (e.g., file,
database). A Text Annotation to indicate that Data Objects can
handle dynamic data (e.g., sensor data) would be meaningless
to a V&V algorithm. The same argument applies for the Flow
Objects. Still, there will be additional di�culties, when the goal
is to reach the transformation stage [20, 19]. BPMN v2.0 falls
short at describing those business rules because it does not con-
tain core modeling elements that can accurately depict them.

The aforementioned examples that BPMN v2.0 cannot rep-
resent are examples that are based on Ubiquitous Computing.
Ubiquitous Computing (frequently referred to as ubicomp) was
coined by Mark Weiser around 1988 [66]. Ubicomp denotes
the third era of modern computing where one person owns and
operates multiple computers (1 person, n computers). The first
and the second were respectively mainframe computing (n per-
sons, 1 computer) and personal computing (1 person, 1 com-
puter). While human-computer interactions are typically ad-
ministered via keyboards and mice as well as display, printers,
and speakers, ubicomp adds to these state of the art input tech-
nologies such as sensors (e.g., accelerometer, gyrometer, geo-
locating sensors), cameras, and microphones [59]. Ubicomp
leverages the fact that computers pervade our lives by propos-
ing solutions that bridge the gap between virtual systems and
the physical environment (i.e., Internet of Things – IoT [33]).

Ubicomp capabilities may provide the basis for solving many
issues in business process management, particularly with re-
spect to process improvement [69, 70, 71], compliance [49],
and security [68]. When ubicomp elements are included in a
business process, we use the term ”ubiquitous business pro-
cess”. A ubiquitous business process is a location-independent
business process that turns its business environment into a
source of data and/or a target of outcome with the least of hu-
man interventions [69]. Ubicomp capabilities include, for in-
stance, Automatic Identification and Data Capture (AIDC) [60]
(e.g., location-tracking [36], activity-sensing [17]) (which helps
to overcome media breaks [26]), context awareness [1], aug-
mented reality [5], sustainability [29], and ambient intelligence
[46] that can be included in business processes. In fact, many
organizations have already adopted such ubicomp capabilities
to cope with the changing business environments and to remain
competitive. For instance, UPS1 overcomes media breaks be-
tween the physical and the digital world through bar-code tags
to update the status of packages transiting through its logistics
system. Netflix2 and YouTube3 use context awareness to rec-
ommend the most popular videos in the user’s location (i.e.,

1http://www.ups.com/
2https://www.netflix.com/
3https://www.youtube.com/

one type of context). TryLive4 proposes augmented reality so-
lutions to allow its users to virtually try on apparel. Nest5 ther-
mostats support sustainability. Google Now6 enables ambient
intelligence. However, as BPMN falls behind in representing
these business scenarios, the organizations have designed them
on their own. Their designs are digressions from the standard,
since details touching the process life-cycle such as confor-
mance [54] and compliance [55] remain overlooked. No formal
V&V and/or transformation initiative(s) can take place, because
the required conditions are not fulfilled. The process personnel
in a process-oriented organization are classified into five cat-
egories; process owner, process manager, process participant,
process analyst and process engineer [16]. Note, process an-
alysts and engineers have direct interaction with BPMN. So,
imagine the organization (i.e., process owner) wants to deploy
augmented reality in one of its processes. Here, the process
analyst has to set the specification for the new process. The
process engineer has to make the specification concrete. Then,
the analyst should validate its conformance before deploying it
for the process participant. In this case, there is higher risk
of having more back-and-forth discussions between analysts
and engineers because there is no standard medium for them
to clearly understand each other. Still, imagine after a certain
time, the organization pushes for an improvement of the process
and the initial team of analyst/engineer has changed. It would
be a challenge for the new one to take over. Even with the old
team being unchanged, the situation can also be challenging.
This is analogous to writing code and coming back to it after
time has passed. Even with comments in the code, it will take
some time for the initial programmer to remember the details of
the code before being able to weigh in with improvements. This
problem can even be exacerbated in the case of a new program-
mer. Ultimately, without a clear-cut/common specification, the
accessibility and use of process diagrams will only exist for the
process analysts who created them.

In the scientific literature, we can find several attempts to
deploy ubicomp or one of its capacities in business processes.
Jung et al. [32] make a proposition of service integration, while
Giner et al. [31] take a model driven approach to harmonize
the dynamism of business processes and the complexity of ubi-
comp. While these two approaches attempt to tackle ubicomp
as a whole, others focus on specific parts of it. For instance, the
authors of [14, 21, 13] focus specifically on context awareness.
Aoumeur et al. [3] and Zhu et al. [72] go even more specific
and focus on one aspect of context awareness which is loca-
tion awareness. A proposition of ”Smart Business Processes”
by means of an RFID integration is discussed in [2].

Although the potential advantages of including ubicomp in
business processes are discussed across all the foregoing refer-
ences, the critical question of how to design ubiquitous busi-
ness processes remains unanswered. The major obstacle is
that BPMN v2.0 cannot represent the ubiquitous computing in-
put technologies. Consequently, it seems paramount to extend

4http://www.trylive.com/
5https://nest.com/
6https://www.google.com/landing/now/

2

it. The present paper presents such an extension that we term
”ubiquitous BPMN” (or, in short, uBPMN).

The remainder of this paper is organized as follows: In Sec-
tion 2, we summarize related work that extended BPMN inside
and outside the scope of ubicomp. Building on that, we enu-
merate the steps needed to coherently extend the notation. Fol-
lowing these steps, Section 3 highlights the ubicomp require-
ments for business process modeling while Section 4 describes
our proposal for extending BPMN v2.0 to fulfill those require-
ments. In Section 5, we walk through an illustrative example
about modeling a ubiquitous business process using our ex-
tended notation. We discuss the overall impact of our contri-
bution in Section 6 and conclude the paper in Section 7.

2. Related Work on BPMN Extensions

In this section, we cover prior extensions of BPMN inside
and outside the scope of ubicomp. In fact, BPMN has been ex-
tended by numerous contributions to describe di↵erent process
characteristics across distinct domains [11]. These include, but
are not limited to, quality management [56, 51], performance
measurement [27, 9], e-health [12], security [52], resources
[61], process tailoring [44], internal control [58] and time [30].

With regard to extensions in the domain of ubicomp, Gao
et al. [32] add sensors and smart device business functions to
close the information gap between the physical world and the
processes. In the same vein, authors of [65] and [63] extend
BPMN to represent Wireless Sensor Networks (WSNs). How-
ever, these extensions place sensors in a separate Pool. A Pool,
based on the BPMN specification, is representative of a process
participant. From a design standpoint, sensing (quantifying a
physical data) is not that di↵erent from running a service. The
BPMN Service Task is placed where appropriate in the pro-
cess model without having a dedicated Pool. Meyer et al. [40],
on the other hand, go by the specification and arrange the sen-
sors in a separate BPMN lane. Finally, Appel et al. [4] extend
BPMN to process event streams from the IoT, but, their work
does not address how the event streams are captured and how
this requirement is fulfilled throughout the BPMN extension.
Additionally, it alters the semantics of the BPMN Events with-
out considering that some of them do carry data (i.e., Message,
Escalation, Error, Signal and Multiple) [42, p.235].

Building on the previous paragraph, it is important to point
out that WSNs are not ubicomp, and ubicomp is not only
WSNs. WSNs are a type of input technologies within the dis-
cipline of ubiquitous computing. Still, some of the extensions
are conservative (extended but staying within the specification)
while others are not (and actually require changing the speci-
fication). In the former group, there is a lack of mechanisms
to represent ubicomp within the process flow. While in the lat-
ter, no cogent reason has been provided to support why digres-
sions from the BPMN standard are necessary, which hinders the
dissemination and acceptance of their aforementioned proposi-
tions. To sum up, we believe and will show in the upcoming
sections that ubicomp extensions of BPMN can be introduced
in a conservative way; a way that neither alters nor contradicts
the semantics of BPMN.

Before tackling the extension, we examined the most cited
references that extended BPMN. They are [32, 11, 56, 51, 27, 9,
52, 61, 44, 58, 30, 12, 65, 63, 40, 4, 62, 39, 37, 10]. Our analysis
identified two major steps that these works have in common:

1. They analyze the requirements of the target domain.
2. They introduce the extension.

For the extension,
(a) they clearly describe the goals and
(b) the scope of the extension;
(c) they extend the core structure and
(d) they extend the notation.

We follow the same procedure. The analysis of the require-
ments of the target domain will be given in Section 3. Section
4 will first describe goals and scope of the extension. Then we
will introduce the extension of the structure in Section 4.1 and
then the extension of the notation in Section 4.2.

3. Ubicomp requirements for business processes

Stories of ubiquitous computing successes abound. For in-
stance, in the transportation domain, ubicomp has been used
to facilitate parking management, control the temperature of
perishable food on the road (e.g., [31]) and compute the ride
fare in public transportation [2]. Yet, the adoption of ubi-
comp elements, although considered a ”promising technolog-
ical path of innovation” [25], has only started to emerge in
rather technology-oriented industries (e.g., traditional manufac-
turing, distribution and retail industries) [28, 43], but has mostly
negligible impact on other industries (e.g., insurance) [6]. As
business applications increasingly become more social, user-
focused, personalized, cloud-based, and/or mobile, organiza-
tions need to address the ”ubiquitous elements” in their business
processes [43]. These have substantial direct as well as medi-
ated e↵ects on process change and, thus, require more adaptive
business processes [25, 45]. However, the ubiquitous element is
not yet considered in standard process models, and thus many
innovation (e.g., [6, 25]) and optimization (e.g., [43, 45]) op-
portunities may be missed.

Enabling the myriad of ubicomp features consists of de-
ploying a variety of input technologies for capturing the vari-
ous kinds of ”dynamic” contexts in the business environment.
While contemporary business process modeling considers static
contexts (e.g., [7]), a dynamic context has not received wide
consideration in business process modeling. In ubiquitous
computing, business environments are constantly subjected to
changes. Additionally, they are influenced by distinct factors.
Temperature, speech, audio, motion, emotion, etc., are all part
of the dynamic context in a ubiquitous business environment
and all have the potential for impacting the process flow. How-
ever, as long as deploying ubicomp requires such features that
cannot be represented in BPMN v2.0, it will remain more chal-
lenging for their great potential to be realized. For instance,
How can a business process be context-aware if it does not have
a mechanism to collect and quantify context? And how can a
business process o↵er augmented reality if does not have an

3

image input stream? To overcome this issue, it is essential to
enrich BPMN v2.0 with new elements and specifications, se-
mantics and enable it to represent ubicomp input technologies.

A BPMN extension for ubicomp would have many benefits:

• Enabling processes to have faster, more accurate and less
expensive data-flow and control-flow [69].

• Improving the process personnel’s experience [34] by of-
fering more customized processes that better reflect their
business needs.

• Increasing the dissemination of the notation among re-
searchers and practitioners in ubicomp by bridging the
gap between their latest achievements and the discipline
of business process management, and vice versa.

• Becoming a common reference to anyone who wants to
engage in a V&V and/or transformation initiative.

It is believed that the amount of data we currently generate
in 10 minutes equals all the data that was generated from pre-
historic times up until 2003. We are generating data when we
swipe our credit cards, run a red light, talk to each other, work-
out, adjust the air conditioning, etc. Even when one is reading
this paper, she/he is generating data (e.g., how fast does the per-
son read, what is the person’s reading pattern, what sections/-
paragraphs does she focus on). The majority of this data cannot
be processed using simple keyboards and mice, such as the eye
movement when reading this paper. On a daily basis, we talk,
listen to people/machines, talk, look at people/things and they
look at us (e.g., camera), produce facial expressions, exhibit
feelings, etc. This information is often thrown away, although it
has potentially great value. As Clive Humby once said7: ”Data
is the new oil”. Ubicomp is the only well-established field that
can minimize this waste through its panoply of new input and
data collection technologies. As a result, it is of great impor-
tance to inject these technologies within business processes and
to include them in managing the workflow.

Interactions with ubiquitous computing systems can take
place via a panoply of mediums [53] such as smart homes,
smart watches, smartphones, laptops, smart signs [35], etc.
They also impact a wide range of applications such as speech
recognition engines in web browsers (e.g., Google Chrome),
mail/messaging, calendars, etc. Users can, now, interact with
systems via audio commands, gesture (e.g., Microsoft Kinect8),
motion/emotion, etc. They can even communicate with them
via a set of standard representations (i.e., barcodes) or even via
proxies. To circumscribe all these features, we started from
what was already established around 2009 [50, 59, 66] and ex-
panded the set following the latest achievements in ubicomp.
To date, media break, context-awareness, augmented reality,
sustainability and ambient intelligence are the main ubicomp
features. As such, we distinguish five types of input technolo-
gies that are essential for enabling them. They are:

7Quoted from the ANA Senior marketers summit
8http://www.xbox.com/en-US/xbox-one/accessories/kinect-for-xbox-one

1. Sensors: quantify the physical data in the business envi-
ronment. Examples of these are CO2, GPS, accelerometer
(a classification of sensors is available in [67, 50]). They
appear in many places (e.g., banks, supermarkets) and ma-
chines (e.g., phones, cars) that we visit and interact with
on a regular basis. At present, a typical smartphone can
have around fifteen sensors.

2. Smart Readers: read an information represented in a
standardized fashion such as bar codes, RFID, NFC, bio-
metrics and magnetic stripes. These play a major role in
identifying objects. For instance, bar codes identify goods
in supermarkets and packages for shipping.

3. Cameras: capture the information as an image (a video is
a series of moving images with a minimum speed of six-
teen frames per second). Images are fundamental for ob-
ject recognition and augmented reality. For example, the
image input technology is used to identify license plates,
analyze facial expressions and virtually try on apparel.

4. Microphones: capture the information as an audio seg-
ment. Note, audio and video streams are independent from
each other. For audio/video collection, both of them must
be used. Microphones are used in situations such as firing
up audio commands (e.g., Google Now, Amazon Echo9,
Apple Siri10) and identifying music (e.g., Shazam11).

5. Collectors: gather information from web-services, local
or remote files (e.g., Dropbox) or databases (e.g., obtain-
ing weather data from a web service) or even proxy de-
vices (e.g., get GPS data from a di↵erent device than the
user’s because both devices share the same context [23]).

In what follows, we propose uBPMN as a viable solution
to represent the aforementioned input technologies and lay the
groundwork for the latest ubicomp features. We illustrate each
addition with concrete examples from the business world and
summarize all the details in an final example.

4. uBPMN

Goals: The main goal of this paper is to provide a conserva-
tive extension (extended by the notation) of BPMN that allows
the creation of end-to-end ubiquitous business processes as well
as the portability of their definitions. The creation stems from
the fact that the new notation lays the groundwork for deploy-
ing many ubiquitous computing features such as AIDC, context
awareness, augmented reality, sustainability and ambient intel-
ligence. For the portability, the new extension can communicate
a wide variety of ubiquitous computing information to a wide
variety of audiences by creating a straightforward bridge for
the gap between the process personnel; e.g., from process an-
alysts who set up the initial drafts of the processes, to process
engineers responsible for implementing the ubiquitous technol-
ogy that will perform those processes. Out extension is intro-
duced to provide them with a standard visualization mechanism

9http://www.amazon.com/oc/echo/
10https://www.apple.com/ios/siri/
11shazam.com

4

to design, manage, control, monitor and communicate ubiqui-
tous business processes in a smooth fashion.

Scope: To overcome the shortfalls of BPMN v2.0 with re-
gard to ubicomp, we introduce ubiquitous BPMN (hereafter
shortened to uBPMN). uBPMN is our conservative extension of
BPMN that allows the creation of end-to-end ubiquitous busi-
ness processes and guarantees their portability. Everything true
about BPMN is also true about uBPMN.

The ubicomp extension of BPMN will form a clear concep-
tual link with ubiquitous business processes. It will also pro-
vide suitable modeling elements to describe ubicomp interac-
tions within the process flow. The proposed extension advances
BPMN by o↵ering support for modeling ubiquitous business
rules. These cannot be represented using traditional BPMN.
Generally speaking, a ubiquitous business rule is a business
rule that uses a ubiquitous computing technology to define or
constrain the aspects of the workflow (e.g., scan the bar-code
to update the package status, read the RFID tag to generate the
invoice). For better comprehensibility, we explain these based
on two examples:

• The general trend for small privately-owned businesses
(e.g., convenience stores, barbers, bakeries) is: the cus-
tomer walks in, waits for her/his turn, gets the product or
the service achieved, pays for it and leaves. For example,
when in a local barber shop; the customer walks in, waits
for his turn, gets his hair done, pays cash and leaves. All
the business rules in this scenario do not depict ubiquity.
Consequently, the process can be designed using BPMN.

• All around the world, the status of each package transit-
ing via the UPS logistics system is updated upon arrival
and before departure, i.e., arrival scan and departure scan.
Here, ubiquity can be depicted for two reasons related to
the ubiquitous business process definition. First, the pro-
cess is location-independent since the scan can take place
anywhere in the world, e.g., UPS Worldport in Louisville,
UPS truck. Second, UPS packages are smart objects dis-
tinguished by bar codes, which is a ubicomp input technol-
ogy. Each package can report its state when scanned. Con-
sequently, the process needs to be designed using uBPMN.

4.1. Structure
The BPMN core structure appears in two representations: A

Meta-Object Facility (MOF) meta-model describing the con-
cepts and an XML Schema Definition (XSD) setting the inter-
change format [62, 18]. The ubicomp core structure extension
targets both of these key pillars.

The MOF class diagram meta-model of BPMN is divided
and presented in segments across the specification manual [42].
Here, we aggregate those segments to the most optimal expres-
sive uBPMN diagram. Due to space allocation, we show the
aggregation result in two figures; Figure 1 and Figure 2. The
classes in white belong to the BPMN v2.0 standard while the
classes in gray reflect the uBPMN extension. Figure 1 shows
the extensions of ”Activity” from the category Flow Object and
”Data Input” from the category Data while Figure 2 illustrates
the extensions of ”Event” from the category Flow Object.

Concerning Figure 1, five new Task structures are intro-
duced. The classes SensorTask, ReaderTask, ImageTask,
AudioTask and CollectorTask inherit the attributes
and model associations of Activity. The attribute
implementation is of type String and refers to the sensing
and/or reading and/or collecting technology implemented
(depending on the class in which it appears). imageFormat is
of type String and refers to the format of the image captured
while audioFormat and audioLength (in seconds) are of
type String and Integer, and refer to the format and length of
the captured audio segment respectively. A new Data structure
is also introduced. It is represented by the class SmartObject
which inherits the attributes and model associations of
DataInput. The additional attribute objectTechnology is a
String describing the ubicomp input technology used.

As indicated in Figure 2, we introduce five new Event struc-
tures for uBPMN. The classes SensorEventDefinition,
ReaderEventDefinition, ImageEventDefinition,
AudioEventDefinition and CollectorEventDefinition

inherit the attributes and model associations of BaseElement
through EventDefinition. Similar to the BPMN events
Message, Escalation, Error, Signal and Multiple, all of the five
uBPMN events carry data. Within the meta-model, this speci-
fication is expressed by connecting SensedData, LabelData,
ImageCapture, AudioCapture and CollectedData to
ItemDefinition. The attribute name in the new classes has
the same semantic as the old ones.

The XSD specification of BPMN v2.0 is in five files:
BPMN20.xsd being the main file and four namespaces (BPM-
NDI.xsd, DC.xsd, DI.xsd and Semantic.xsd). The uBPMN up-
grade targets the last file since it holds the BPMN semantics.
Due to its lengthy content (most lengthy amongst the others),
we omit the BPMN v2.0 aspects and focus only on the exten-
sions (see Listing 112). The ellipsis refers to the existing code
in the BPMN v2.0 specification. QName and ##unspecified

preserve their semantics [42, p.92-167]; the first references a
definition existing in an external XML file while the second
leaves the implementation technology window open because
there exists numerous sensing/reading/collecting technologies
and more are yet to come. Note, since we altered the original
Semantic.xsd file, we modify the values of the attributes xmlns
and targetNamespace to ubpmn, to indicate this change.

4.2. Notation
The BPMN notation o↵ers a multitude of modeling elements

that help shape the business process and define its behavior.
The additional ubicomp elements will provide suitable model-
ing concepts for ubicomp (e.g., collecting GPS coordinates) and
be adapted to incorporate new behavior within business pro-
cesses (e.g., context awareness).

As discussed in the previous section, the extensions target
”Activity” and ”Event” in the category Flow Object as well as
”Data Input” from the category Data. Consequently, this sec-
tion follows up by extending the notation and introducing the
equivalent modeling elements.

12Built and validated with Liquid XML Studio 2014

5

!"#$%&'%()*+#,-"%+./.0%%1*,+

!#-,&-23,+-"-4. /.5+-*6*&

!7%()1*-"%+23,+-"-4./.5+-*6*&

!"#$%$#&

'()*+,!"#$%$#$-./ !"#$%&$%#$%'#()*+*),%*-"

.+/-012,%,3

899:

;"%<)*7"="7,-"%+

899:

4,56

.+/-017)%*8*%*(53

!"()1*(*+-,-"%+./.<-&"+6

'("94,56

.+/-017)%*8*%*(53

!"()1*(*+-,-"%+./.<-&"+6

:5(/4,56

.+/-01;$0,"!"%(/,)%*-"3

!"()1*(*+-,-"%+./.<-&"+6

'(/8*)(4,56

.+/-017)%*8*%*(53

!"()1*(*+-,-"%+./.<-&"+6

!"+#-,+-",-*. /.0%%1*,+

<()(*8(4,56

.+/-017)%*8*%*(53

=,"$,>4,56

.+/-01;$0,"!"%(/,)%*-"3

! "()1*(*+-,-"%+./.<-&"+6

?$5*"(55<$>(4,56

.+/-017)%*8*%*(53

! "()1*(*+-,-"%+./.<-&"+6

'("5-/4,56

.+/-017)%*8*%*(53

!"()1*(*+-,-"%+./.<-&"+6

<(,9(/4,56

.+/-017)%*8*%*(53

!"()1*(*+-,-"%+./.<-&"+6

@->>()%-/4,56

.+/-017)%*8*%*(53

!#7&")-$%&(,-./.<-&"+6

!#7&")-./.<-&"+6

')/*#%4,56

.+/-017)%*8*%*(53

!+,(*./.<-&"+6

!"#'%11*7-"%+./.0%%1*,+

2,%,!"#$%

.+/-012,%,3

!%>?*7-@*7A+%1%64./.<-&"+6

'0,/%&AB()%

.+/-012,%,3

!%(07C,/(D>(0("%

.+/-012,%,3

!+,(*./.<-&"+6

!7,),7"-4./.5+-*6*&

!"#B+1"("-*C./.0%%1*,+

2,%,'%-/(

.+/-012,%,3

2,%,755-)*,%*-"

.+/-012,%,3

2,%,&$%#$%755-)*,%*-"

.+/-012,%,3

2,%,!"#$%755-)*,%*-"

.+/-012,%,3

899:

D D

;C,-,E3-)3-F##%7",-"%+#

D D ;#%3&7*G*=

D

;-,&6*-G*=

:

:

;C,-,5+)3-#

D

;C,-,5+)3-F##%7",-"%+#

899:

!"(,6*$%&(,-./.<-&"+6

!0,E(4,56

.+/-017)%*8*%*(53

!,3C"%H*+6-A./.5+-*6*&

!,3C"%$%&(,-. /.<-&"+6

7$9*-4,56

.+/-017)%*8*%*(53

Figure 1: uBPMN Meta-Model (Part I)

!"#$"%&'"()*)(+,-,.//&%#$

!"#$%&'()*+$,

-.'"/0)*+$,12

3$,+'/+%4&,+5&,67)*+$,

-.'"/0)*+$,12

!)01$(%2234()$5,-,.//&%#$

8,&',)*+$,

-.'"/0)*+$,12

!4#2#&&%&63&()4&%, -,.//&%#$

!/3(43(7%(, -,83(43(7%(

5&,67)*+$,

-.'"/0)*+$,12

)''"')*+$,9+.4$4,4"$

-.'"/0)*+$,12

:+'/4$&,+)*+$,9+.4$4,4"$

-.'"/0)*+$,12

!$#9%,-,7(2)$5

;4$<)*+$,9+.4$4,4"$

-.'"/0)*+$,12

!:#)(;/2</94&%()/$,-,.//&%#$

5"/=+$1&,+)*+$,9+.4$4,4"$

-.'"/0)*+$,12

:4/+')*+$,9+.4$4,4"$

-.'"/0)*+$,12

>+11&?+)*+$,9+.4$4,4"$

-.'"/0)*+$,12

5"$%4,4"$&@)*+$,9+.4$4,4"$

-.'"/0)*+$,12

5&$6+@)*+$,9+.4$4,4"$

-.'"/0)*+$,12

84?$&@)*+$,9+.4$4,4"$

-.'"/0)*+$,12

)16&@&,4"$)*+$,9+.4$4,4"$

-.'"/0)*+$,12

A+&%+')*+$,9+.4$4,4"$

-.'"/0)*+$,12

8+$1"')*+$,9+.4$4,4"$

-.'"/0)*+$,12

)*+$,9+.4$4,4"$

-.'"/0)*+$,12

B#%4")*+$,9+.4$4,4"$

-.'"/0)*+$,12

5"@@+6,"')*+$,9+.4$4,4"$

-.'"/0)*+$,12

!)(%9=)$>,-,1(%9=)$>

!0(23"(32%?%@,-,A&%9%$(

!)0</&&%"()/$,-,.//&%#$

3,+/9+.4$4,4"$

-.'"/05"//"$2

!$#9%,-,7(2)$5

84?$&@

-.'"/0)*+$,12

!$#9%,-,7(2)$5

>+11&?+

-.'"/05"//"$2

!$#9%,-,7(2)$5

!%0"#&#()/$</&>%,-,7(2)$5

)16&@&,4"$

-.'"/0)*+$,12

!$#9%,-,7(2)$5

)''"'

-.'"/05"//"$2

!$#9%,-,7(2)$5

;&C+@9&,&

-.'"/0)*+$,12

!$#9%,-,7(2)$5

8+$1+%9&,&

-.'"/0)*+$,12

!$#9%,-,7(2)$5

3/&?+5&=,#'+

-.'"/0)*+$,12

!$#9%,-,7(2)$5

B#%4"5&=,#'+

-.'"/05"//"$2

!$#9%,-,7(2)$5

5"@@+6,+%9&,&

-.'"/0)*+$,12

!)$43(7%(, -,1$43(7%(

:7'"D)*+$,

-.'"/0)*+$,12

3$,+'/+%4&,+:7'"D)*+$,

-.'"/0)*+$,12

BCCD E

BCCDE

!"#$%

&'()*+!"#$%,-

3/=@464,:7'"D)*+$,

-.'"/0)*+$,12

)$%)*+$,

-.'"/0)*+$,12

3/&?+)*+$,9+.4$4,4"$

-.'"/0)*+$,12

F%*%$(G%@)$)()/$0

F%*%$(G%@)$)()/$0

F0/32"%,,,E

F(#25%(,,,BCCD

E

F%22/2?%@BCCD

E

F#3>)/?%@BCCD

E

BCCD E
BCCD

F&#H%&?%@

F0%&%"()/$?%@

E
BCCD

F4I+0)"#&G#(#?%@

E
BCCD

F)9#5%?%@

E

F9%00#5%?%@BCCD

E

F0)5$#&?%@BCCD

E

F%0"#&#()/$?%@BCCD

E

BCCD

F0(23"(32%?%@

E

BCCD

E

BCCD

E

BCCD

E

BCCD

E

BCCD

E

BCCD

E

BCCD

E

BCCD

F0(23"(32%?%@ F0(23"(32%?%@ F0(23"(32%?%@F0(23"(32%?%@ F0(23"(32%?%@ F0(23"(32%?%@F0(23"(32%?%@
F0(23"(32%?%@

Figure 2: uBPMN Meta-Model (Part II)

6

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xsd:schema elementFormDefault="qualified" attributeFormDefault="unqualified" xmlns="ubpmn"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="ubpmn">
4

5

6 ...
7

8

9 <xsd:element name="sensorTask" type="tSensorTask" substitutionGroup="flowElement"/>
10 <xsd:complexType name="tSensorTask">
11 <xsd:complexContent>
12 <xsd:extension base="tTask">
13 <xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>
14 </xsd:extension>
15 </xsd:complexContent>
16 </xsd:complexType>
17

18 <xsd:element name="readerTask" type="tReaderTask" substitutionGroup="flowElement"/>
19 <xsd:complexType name="tReaderTask">
20 <xsd:complexContent>
21 <xsd:extension base="tTask">
22 <xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>
23 </xsd:extension>
24 </xsd:complexContent>
25 </xsd:complexType>
26

27 <xsd:element name="collectorTask" type="tCollectorTask" substitutionGroup="flowElement"/>
28 <xsd:complexType name="tCollectorTask">
29 <xsd:complexContent>
30 <xsd:extension base="tTask">
31 <xsd:attribute name="implementation" type="tImplementation" default="##unspecified"/>
32 </xsd:extension>
33 </xsd:complexContent>
34 </xsd:complexType>
35

36 <xsd:element name="imageTask" type="tImageTask" substitutionGroup="flowElement"/>
37 <xsd:complexType name="tImageTask">
38 <xsd:complexContent>
39 <xsd:extension base="tTask">
40 <xsd:attribute name="imageFormat" type="xsd:string"/>
41 </xsd:extension>
42 </xsd:complexContent>
43 </xsd:complexType>
44

45 <xsd:element name="audioTask" type="tAudioTask" substitutionGroup="flowElement"/>
46 <xsd:complexType name="tAudioTask">
47 <xsd:complexContent>
48 <xsd:extension base="tTask">
49 <xsd:attribute name="audioLength" type="xsd:integer"/> <!-- audioLength (in seconds) -->
50 <xsd:attribute name="audioFormat" type="xsd:string"/>
51 </xsd:extension>
52 </xsd:complexContent>
53 </xsd:complexType>
54

55 <xsd:element name="smartObject" type="tSmartObject" />
56 <xsd:complexType name="tSmartObject">
57 <xsd:complexContent>
58 <xsd:extension base="tDataInput">
59 <xsd:attribute name="objectTechnology" type="xsd:string"/>
60 </xsd:extension>
61 </xsd:complexContent>
62 </xsd:complexType>
63

64 <xsd:element name="sensedData" type="tSensedData" substitutionGroup="rootElement"/>
65 <xsd:complexType name="tSensedData">
66 <xsd:complexContent>
67 <xsd:extension base="tRootElement">
68 <xsd:attribute name="name" type="xsd:string"/>
69 <xsd:attribute name="structureRef" type="xsd:QName"/>
70 </xsd:extension>
71 </xsd:complexContent>
72 </xsd:complexType>
73

74 <xsd:element name="sensorEventDefinition" type="tSensorEventDefinition" substitutionGroup="eventDefinition"/>
75 <xsd:complexType name="tSensorEventDefinition">
76 <xsd:complexContent>
77 <xsd:extension base="tEventDefinition">
78 <xsd:attribute name="physicalDataRef" type="xsd:QName"/>
79 </xsd:extension>
80 </xsd:complexContent>
81 </xsd:complexType>
82

83 <xsd:element name="labelData" type="tLabelData" substitutionGroup="rootElement"/>
84 <xsd:complexType name="tLabelData">

7

85 <xsd:complexContent>
86 <xsd:extension base="tRootElement">
87 <xsd:attribute name="name" type="xsd:string"/>
88 <xsd:attribute name="structureRef" type="xsd:QName"/>
89 </xsd:extension>
90 </xsd:complexContent>
91 </xsd:complexType>
92

93 <xsd:element name="readerEventDefinition" type="tReaderEventDefinition" substitutionGroup="eventDefinition"/>
94 <xsd:complexType name="tReaderEventDefinition">
95 <xsd:complexContent>
96 <xsd:extension base="tEventDefinition">
97 <xsd:attribute name="labelRef" type="xsd:QName"/>
98 </xsd:extension>
99 </xsd:complexContent>

100 </xsd:complexType>
101

102 <xsd:element name="collectedData" type="tCollectedData" substitutionGroup="rootElement"/>
103 <xsd:complexType name="tCollectedData">
104 <xsd:complexContent>
105 <xsd:extension base="tRootElement">
106 <xsd:attribute name="name" type="xsd:string"/>
107 <xsd:attribute name="structureRef" type="xsd:QName"/>
108 </xsd:extension>
109 </xsd:complexContent>
110 </xsd:complexType>
111

112 <xsd:element name="collectorEventDefinition" type="tCollectorEventDefinition" substitutionGroup="eventDefinition"/>
113 <xsd:complexType name="tCollectorEventDefinition">
114 <xsd:complexContent>
115 <xsd:extension base="tEventDefinition">
116 <xsd:attribute name="selectionRef" type="xsd:QName"/>
117 </xsd:extension>
118 </xsd:complexContent>
119 </xsd:complexType>
120

121 <xsd:element name="audioCapture" type="tAudioCapture" substitutionGroup="rootElement"/>
122 <xsd:complexType name="tAudioCapture">
123 <xsd:complexContent>
124 <xsd:extension base="tRootElement">
125 <xsd:attribute name="name" type="xsd:string"/>
126 <xsd:attribute name="structureRef" type="xsd:QName"/>
127 </xsd:extension>
128 </xsd:complexContent>
129 </xsd:complexType>
130

131 <xsd:element name="audioEventDefinition" type="tAudioEventDefinition" substitutionGroup="eventDefinition"/>
132 <xsd:complexType name="tAudioEventDefinition">
133 <xsd:complexContent>
134 <xsd:extension base="tEventDefinition">
135 <xsd:attribute name="audioRef" type="xsd:QName"/>
136 </xsd:extension>
137 </xsd:complexContent>
138 </xsd:complexType>
139

140 <xsd:element name="imageCapture" type="tImageCapture" substitutionGroup="rootElement"/>
141 <xsd:complexType name="tImageCapture">
142 <xsd:complexContent>
143 <xsd:extension base="tRootElement">
144 <xsd:attribute name="name" type="xsd:string"/>
145 <xsd:attribute name="structureRef" type="xsd:QName"/>
146 </xsd:extension>
147 </xsd:complexContent>
148 </xsd:complexType>
149

150 <xsd:element name="imageEventDefinition" type="tImageEventDefinition" substitutionGroup="eventDefinition"/>
151 <xsd:complexType name="tImageEventDefinition">
152 <xsd:complexContent>
153 <xsd:extension base="tEventDefinition">
154 <xsd:attribute name="imageRef" type="xsd:QName"/>
155 </xsd:extension>
156 </xsd:complexContent>
157 </xsd:complexType>
158 </xsd:schema>

Listing 1: uBPMN XSD

8

4.2.1. Items and Data
BPMN v2.0 o↵ers four types of data modeling elements;

Data Object (including Data Object Reference and Data Object
Collection), Data Input, Data Output and Data Store (including
Data Store Reference). The Data Object/Store References are a
way to reuse Data Objects/Stores in the same diagram. Unlike
a Data Object whose life-cycle is tied to its parent Process/Sub-
Process, a Data Store is about persistence of the data beyond the
scope of the process. Data Inputs and Data Outputs respectively
represent data requirements and data outcomes in a process.

Following the previous classification, uBPMN introduces a
new data modeling element that we name Smart Object. The-
oretically speaking, a smart object is a plain physical object
enriched with a ubiquitous computing input technology to re-
port its state. For example, a box is a plain physical object. On
the other hand, a box with a descriptive bar-code tag becomes
a smart object because the bar-code tag can report the state of
the box with no media break. The Smart Object addition re-
flects the uBPMN extension for the category Data following
the structure of the meta-model presented in Figures 1 and 2,
the XSD of Listing 1 and the guidelines explained below:

• Smart Object

Figure 3: Smart Object

A Smart Object is a Data Input object enriched with a ubi-
comp input technology to report its state with the least of
human interventions. It denotes a declaration that a par-
ticular kind of data will be collected by either a Sensor,
Smart Reader, Microphone or a Camera. The Smart Ob-
ject has the same notation as the BPMN v2.0 Data Object.
We place a brain logo in the upper left corner of its visual
representation to indicate that it is a Smart Object.

Figure 4: uBPMN Tasks

Figure 5: Sensor Task Example

Figure 6: Reader Task Example

Figure 7: Image Task Example

Figure 8: Audio Task Example

Figure 9: Collector Task Example

4.2.2. Activities
The OMG defines three types of activities in the BPMN v2.0

standard; Task, Sub-Process and Call Activity. A Task is an
atomic activity that describes an action taken in the process
flow (e.g., input student ID) while the Sub-Process is a self-
contained composite subset of a process (e.g., input student ID,
update student record, send a notification to the student; two

9

Tasks and one Message Throw Event). The Call Activity al-
lows the inclusion of reusable Tasks and Processes by invoking
them from the Global Process. Activating the Call Activity re-
sults in transferring control to the Global Process (e.g., calling
either the latter Task or Sub-Process of updating the student’s
records which figure in the Global Process).

Being a subtype of Activity, the element Task has also seven
subtypes (i.e., Send, Receive, User, Service, Manual, Script and
Business Rule). They are used to describe the process flow in a
very specific fashion. Within uBPMN, we add five new types to
the Task subset, for a total of twelve elements. The additional
elements are Sensor, Reader, Image, Audio and Collector. They
reflect our uBPMN extension for the Flow Object Activity fol-
lowing the structure of the meta-model shown in Figures 1 and
2, the XSD of Listing 1 and the guidelines explained below:

• Sensor Task

A Sensor Task is a Task that uses some sort of sensor (e.g.,
[67, 50]) to collect a particular type of information in the
business environment. A Sensor Task object shares the
same shape as the Task, which is a rectangle with rounded
corners. However, there is a signal clip art in the upper
left corner of the shape indicating that the Task is a Sensor
Task (see Figure 4). In addition, the Sensor Task has a
maximum of one connection to a Smart Object. Note, in
the case of GPS, one connection is enough.

Example: The process participant is getting out of work
and she requests a taxi. The taxi is assigned to participant
after sensing her current location. Here, the current loca-
tion (latitude and longitude) is sensed from the Smart Ob-
ject GPS satellite and transferred to the taxi company sys-
tem. The ubiquitous business process fragment is shown
in Figure 5. Note, we disregard designing the communi-
cation with the taxi company system and focus solely on
the Sensor Task segment. The Link Intermediate Events of
type Catch and Throw indicate that what is presented is
only a fragment. Text Annotations can also be used to de-
scribe the sensing technology used. These comments are
valid for all the examples that follow in this paper.

• Reader Task

A Reader Task is a Task that uses some sort of ubiqui-
tous reading technology (e.g., Bar-code, RFID, NFC, Bio-
metrics, Magnetic Stripes) to collect a particular informa-
tion in the business environment. A Reader Task object
shares the same shape as the Task, which is a rectangle
with rounded corners. However, there is a scanner in the
upper left corner of the shape to indicate that the Task is a
Reader Task (see Figure 4). In addition, the Reader Task
has exactly one single connection to a Smart Object.

Example: The process participant is in a virtual subway
store (e.g., Homeplus in South Korea13). He can add items
to his cart by scanning their bar-codes. Here, the product is

13www.homeplus.co.kr

identified by reading its bar-code. The ubiquitous business
process fragment is shown in Figure 6.

• Image Task

An Image Task is a Task that uses a video stream to collect
a particular information in the business environment. The
data collected is an image capture; one frame. For multiple
frames (i.e., video), the Task can be looping. An Image
Task object shares the same shape as the Task, which is
a rectangle that has rounded corners. However, there is a
camera in the upper left corner of the shape indicating that
the Task is of type Image (see Figure 4). In addition, the
Image Task has a single connection to one Smart Object.

Example: The process participant walks by a street ad
sign. She sees a product she likes but she does not have ac-
cess to the product’s identifier (e.g., bar-code). Numerous
object recognition algorithms can now be used to upgrade
the physical object (snapshot) to a Smart Object. The most
famous among all is the Scale-Invariant Feature Transform
(or SIFT) introduced by David Lowe [38]. The user can
add the product to her cart by taking a picture of it. The
ubiquitous business process fragment is shown in Figure
7.

• Audio Task

An Audio Task is a Task that uses an audio stream to col-
lect a particular information in the business environment.
The data collected is an audio segment. An Audio Task
object shares the same shape as the Task, which is a rect-
angle that has rounded corners. However, there is a micro-
phone in the upper left corner of the shape indicating that
the Task is of type Audio (see Figure 4). In addition, the
Audio Task has a unique connection to one Smart Object.

Example: The process participant hears music he likes. He
wants to buy it but he neither knows the singer nor the
title of the song. The user can add a song to his cart after
providing a 10 second excerpt of it (e.g., Shazam). The
ubiquitous business process fragment is shown in Figure
8.

• Collector Task

A Collector Task is a Task that collects a particular infor-
mation in the business environment asides from using sen-
sors, smart readers, video or audio feed. The collection is
usually accomplished from databases, files or via a proxy
entity (e.g., strangers take pictures in a party using distinct
phones, they want to share the images, but without shar-
ing their contact information or befriending each other on
social networks, the collection can be accomplished from
each others’ phones by having an ephemeral group con-
text connection [23]). These are distinctive traits that su-
persede the capabilities of the Service Task. A Collector
Task object shares the same shape as the Task, which is a
rectangle with rounded corners. However, there is a ham-
per in the upper left corner of the shape to indicate that the
Task is a Collector Task (see Figure 4). In addition, the

10

Collector Task can either be connected to a Data Object
or a Data Store depending on the persistence of the data;
ephemeral for the former and permanent for the latter.

Example: The process participant is on a trip and she wants
to watch the highest rated movies in her current location
(e.g., Movie Suggestions for Netflix, Video Recommenda-
tion for YouTube). Location, in addition to GPS sensors,
can also be determined through the carrier network. The
list of the highest rated movies in the user’s current loca-
tion is displayed to her after collecting her current loca-
tion. The ubiquitous business process fragment is shown
in Figure 9.

4.2.3. Events
An Event is something that occurs during the course of

a process and a↵ects its flow. BPMN v2.0 defines twelve
Events, i.e., None, Message, Timer, Error, Escalation, Can-
cel, Compensation, Conditional, Link, Signal, Terminate Mul-
tiple and Parallel Multiple (None has no trigger, therefore no
EventDefinition, while Multiple and Parallel Multiple have
multiple triggers as indicated on the Meta-Model). The twelve
Events are classified into three types; Start, Intermediate (Catch
and Throw) and End. In addition, they are two flavors of events:
Events that catch a trigger and Events that throw a result. For
that matter, Start and Intermediate Catch belong to the former
category while Intermediate Throw and End belong to the latter
one. Hereafter, we focus on Events that catch a trigger (from
the business environment).

Building on the previous classifications, uBPMN adds five
new events that catch a trigger to the BPMN v2.0 standard.
These are Sensor, Reader, Image, Audio, and Collector. The
uBPMN additional Events can be used at any process level.
Similar to the events Message, Escalation, Error, Signal and
Multiple, uBPMN supplementary events do indeed carry data.
Note, they carry the same names as the uBPMN additional
Tasks. This is because they follow the same concept as the
BPMN Message (Tasks and Events) where in Tasks the process
participant voluntarily takes action while in Events the action

Figure 10: uBPMN Events

Figure 11: Sensor Event Example

Figure 12: Reader Event Example

Figure 13: Image Event Example

Figure 14: Audio Event Example

Figure 15: Collector Event Example

is triggered once the event is fired. Although being a conven-
tion rather than a rule, Events labels are framed in passive voice
(e.g., Code Scanned) while Activity labels are expressed in ac-
tive voice (e.g., Scan Code).

The Sensor, Reader, Image, Audio, and Collector Events re-
flect the uBPMN extension of the Flow Object Event following
the structure of the meta-model presented in Figures 1 and 2,
the XSD of Listing 1 and the guidelines explained below:

• Sensor Events

A Sensor Event is an Event triggered by a particular infor-
mation sensed in the business environment. There are two
variations: Start Event and Catch Intermediate Event as
shown in Figure 10. Unlike the Sensor Task, linking the
Sensor Event to a Smart Object is possible (carries data
and is of type start and/or intermediate catch; [42, p.235])
but is not necessary since this is an event and it will be
fired once the Smart Object presents itself in the business
environment and the information is indeed sensed.

Example: The process participant is in a smart home. The
carbon dioxide sensor detects the level of CO2 in the air

11

and adjusts the air conditioning. The ubiquitous busi-
ness process fragment is shown in Figure 11. Note, we
use a Sensor Start Event because the collaboration process
(a process with two or more participants) with the smart
home starts when the participant walks in.

• Reader Events
A Reader Event is an Event triggered by a particular type
of information read in the business environment. There are
two variations: Start Event and Catch Intermediate Event
as shown in Figure 10. Unlike the Reader Task, linking the
Reader Event to a Smart Object is possible (carries data
and is of type start and/or intermediate catch; [42, p.235])
but is not mandatory since this is an event and it will be
fired once the Smart Object presents itself in the business
environment and the information is indeed read.

Example: The process participant is about to exit the high-
way. When vehicles pass through any of the toll plazas on
the highway exits, an RFID reader scans the RFID tags in-
stalled on the vehicles. The data is then sent to a server to
deduct the toll from the vehicle/tag owner’s balance (i.e.,
e-Tolling). The ubiquitous business process fragment is
shown in Figure 12. Note, we use a Reader Intermediate
Event of type Catch because the process started when the
driver entered the highway.

• Image Events
An Image Event is an Event triggered by a particular in-
formation snapped in the business environment. There are
two variations: Start Event and Catch Intermediate Event
as shown on Figure 10. Unlike the Image Task, linking the
Image Event to a Smart Object is possible (carries data
and is of type start and/or intermediate catch; [42, p.235])
but is not mandatory since this is an event and it will be
fired once the Smart Object presents itself in the business
environment and the information is indeed snapped.

Example: A regular customer walks into a restaurant. The
system, after taking a picture of the customer’s face at the
entrance, sends it to the clerk to prepare his usual order
right away (e.g., Facedeals by Facebook14). The ubiq-
uitous business process fragment is shown in Figure 13.
Note, we use an Image Start Event because the order pro-
cess starts when the regular customer’s face is captured
and identified.

• Audio Events
An Audio Event is an Event triggered by an audio infor-
mation captured in the business environment. There are
two variations: Start Event and Catch Intermediate Event
as shown on Figure 10. Unlike the Audio Task, linking the
Audio Event to a Smart Object via a Data Association is
possible (carries data and is of type start and/or intermedi-
ate catch; [42, p.235]) but is not mandatory since this is an

14http://www.dailymail.co.uk/sciencetech/article-2187801/Were-watching-
The-camera-recognise-Facebook-picture-time-walk-shop.html

event and it will be fired once the Smart Object presents
itself in the business environment and the information is
indeed captured.

Example: The process participant wants to buy a prod-
uct via audio commands (e.g., ”OK Google” then ”re-
quest” for Google Now, ”Alexa” then ”request” for Ama-
zon Echo, ”Siri” then ”request” for Apple Siri; request
changes as appropriate). For example, ”OK Google” then
”Flights to San Francisco” will list flights to San Francisco
(the outbound location is sensed or collected by the sys-
tem). The ubiquitous business process fragment is shown
in Figure 14. Note, the process starts with the audio cap-
ture which explains the use of the Audio Start Event (here
it is ”OK Google”). The Audio Intermediate Event of type
Catch will capture the request (here it is ”Flights to San
Francisco”).

• Collector Events

A Collector Event is an Event triggered by a particular
information collected from a database or a file in the busi-
ness environment (e.g., Events on a DBMS, a file recently
synchronized on a remote storage such as Dropbox). There
are two variations: Start Event and Catch Intermediate
Event as shown on Figure 10. Unlike the Collector Task,
linking the Collector Event to a Smart Object via a Data
Association is possible (carries data and is of type start
and/or intermediate catch; [42, p.235]) but is not manda-
tory since this is an event and it will be fired once the Smart
Object presents itself in the business environment and the
information is indeed collected.

Example: Dat Autohus is a large German used-car dealer.
Each day many cars are accepted and prepared for resale.
All vehicles are parked on a large lot. If a prospective
customer goes on a test drive, it is not necessary that the
car gets returned to its original spot when the test drive
is done. To keep track of its vehicles, the company logs
the parking locations and sends a notification with the new
parking spot to each potential buyer [2]. The ubiquitous
business process fragment is shown in Figure 15. Note,
the notification process starts when location changes on
Dat Autohus logs which explains the use of the Collector
Start Event.

5. Illustrative Example

Inspired from Trylive15 and HappyView16, this section
presents an overall example in which we show how uBPMN
is used to describe the ubiquitous business process whose busi-
ness objective is ”Order Eyeglass Frames”. We limit ourselves
to the most ubiquitous segment of the process and assume that
the customer owns an account with details such as gender and
age already on record (we neither cover the account creation

15http://www.trylive.com/
16http://www.happyview.fr/

12

!
"
#
$
$
%
&
'
(
!
)
*
+
,
-

.
*
,
/

!"#$%&$'"()*

+*&,*$-./(01.&

2.33*/0$-./(01.&

+*&4$

5*/.))*&4(6

01.&,

2(708"*$'(/*
+*3*/0$9".48/0

:8;)*&0$<10=$

9".48/0

:44$9".48/0$0.$

2("0

>9+$+(0*3310*

!"(&,)1,,1.&

9(/?*0

28,0.)*"@,

'(/*

2.33*/0$:;*

2.33*/0$>*&4*"

>*&*"(0*$

5*/.))*&4(6

01.&,

+=.771&;$

+#,0*)$AB

+=.771&;$

+#,0*)$AB

28""*&0

-./(01.&

+*&0

28""*&0$-./(01.&

5*/*1C*4

5*/.))*&4(01.&,

5*/*1C*4

%&*$%701.&$%&3#

Figure 16: Order Eyeglass Frames Ubiquitous Business Process Diagram in uBPMN (DB: Data-Base)

process nor the checkout process in this example). The scenario
of ”Order Eyeglass Frames” process is presented as follows:

1. Once the potential customer signs in, her current location
is determined (Sensor Task and/or Collector Task depend-
ing on the device) and reported to the server.

2. Based on the location information reported, gender and
age, a list of the most popular items are recommended to
the user.

3. The user tries as many eyeglass frames as she wants before
adding them to the cart.

Building on the scenario, we can stress two points. First, be-
cause both desktop and mobile devices are targeted, the process
must be location-independent. Second, the interactions with
the business environment are accomplished with the least num-
ber of human interventions (i.e., capture current location, age,
gender and face of the user). The two key pillars confirm that
”Order Eyeglass Frames” is in fact a ubiquitous business pro-
cess. The first business rule mandates that the current location
of the user should be collected and reported to the backend of
the system. In the same vein, the third business rule o↵ers the
possibility to virtually try on the frames before adding them to
the shopping cart. From a ubiquitous computing standpoint,
these two rules respectively invoke the technologies of context
and augmented reality. BPMN v2.0 neither o↵ers a mechanism
to collect and quantify the location data nor can it represent an
input video stream. As a result, we have to use uBPMN to de-
scribe these ubiquitous business rules.

The diagram of ”Order Eyeglass Frames” is shown in Fig-
ure 16. The Complex Gateway is placed to limit capturing lo-
cation to one medium; either sensing from the GPS satellites
or collecting from the transmission packets (whichever option
is e�cient). That segment is a simplified version of Google

Fused Location17 that extends the battery life and guarantees
the sustainability feature of ubicomp. It also fulfills the require-
ment of running the process via both mobile (either sensing or
collecting) and desktop (only collecting) devices. Note, even
through mobile devices, sensing location can be substituted by
collecting location. Still, the location sensing frequency can
be adapted to the activity sensing result (e.g., Google Activ-
ity Recognition18). In addition to sustainability and the inher-
ent AIDC, context awareness and augmented reality can also
be depicted in the process. The former is expressed through
recommending the most popular items based on the context of
the potential customer (gender, age, location) while the latter
is about enabling her/him to try on the frames virtually via the
camera of the device.

6. Discussion

This article is both a specification document and a model-
ing guide for uBPMN. We introduce uBPMN to address the
many cases in the field of ubiquitous computing that supersede
the capabilities of BPMN v2.0. The limitation of BPMN v2.0
(i) hinders the dissemination of ubicomp ideas within business
process management and (ii) blocks any verification, validation
and transformation initiative that may arise within ubiquitous
business processes.

The extension from BPMN v2.0 to uBPMN was accom-
plished following the process adopted by many references that
targeted extending BPMN. We also adopt the same phrasing

17https://developers.google.com/android/reference/com/
google/android/gms/location/FusedLocationProviderApi

18http://developer.android.com/reference/com/google/
android/gms/location/ActivityRecognition.html

13

pattern used by the Object Management Group in order to help
BPMN users easily understand the idea behind uBPMN. In do-
ing so, we lay the groundwork to tackle the model of a ubiq-
uitous business process rather than focusing only on its visual
diagram (a diagram is only a perspective of a model). So first,
we highlight the requirements of ubiquitous computing with re-
spect to business process modeling and how the inability of
BPMN to represent ubicomp input technologies results in not
being able to fully support ubiquitous business processes. Sec-
ond, and building on the ubicomp requirements highlighted, we
extend the core structure of BPMN. This comes up in two rep-
resentations; a MOF meta-model and an XSD. We then expand
the notation with new core modeling elements following the
core structure of uBPMN. Each and every core modeling ele-
ment is presented along a concrete example from the business
world.

Additionally, an illustrative example of a ubiquitous business
process whose business objective is ”Order Eyeglass Frames”
is provided. The illustrative example process deploys three ubi-
comp input technologies (image, collector and sensor) and de-
picts three ubicomp features (sustainability, augmented reality
and context awareness) in addition to the inherent AIDC. To
sum up, uBPMN satisfies the requirements of ubiquitous com-
puting, and serves as a stepping stone towards an o�cial exten-
sion of BPMN v2.0 with the purpose of modeling ubiquitous
business processes.

The ten examples presented across Section 4 along with the
illustrative example in Section 5 are all real and appear in the
business world. They highlight how uBPMN can appropriately
model those concrete ubiquitous business rules. These were
managed in an ad hoc fashion with random digressions from
the standard. uBPMN can also maximize the visual quality of
ubiquitous business process models. When modeling, process
analysts can reduce ambiguity by placing the most meaningful
core modeling element(s) that best describe(s) the ubiquitous
business rule(s) instead of burdening the diagrams with super-
fluous text annotations. When implementing the models, pro-
cess engineers can accurately convey the ideas of the analysts
which reduces the round-trips between analysts and engineers,
and, by extension, the time and cost of doing so.

This paper can be a reference for entities who want to model,
verify, validate and/or transform ubiquitous business processes.
The MOF meta-model along with the XSD can facilitate that
purpose and be loaded, for example, into the Eclipse devel-
opment environment with the appropriate plugins. Both the
meta-model and the XSD were extended according to the Ob-
ject Management Group guidelines, further indicating their va-
lidity. Finally, we also validated the XSD using a well-known
tool.

An important limitation of our approach is that ubicomp is
progressing at an exponential pace. This version of uBPMN
represents the current state of ubicomp input technologies. As
ubicomp evolves and new input technologies/features are de-
veloped, there will need to be future extensions that will o↵er
an even better user experience. To support this, it is important
to bear in mind that uBPMN is extensible itself.

7. Conclusion and Future Work

In this paper, we propose a specification of uBPMN, which is
an extension of BPMN v2.0 that allows for modeling ubiquitous
business processes. In light of this, we conservatively extend
BPMN to address the many shortcomings that it exhibits when
it comes to describing ubiquitous business processes. uBPMN
progresses BPMN v2.0 by:

• accurately modeling ubiquitous business processes via a
set of more meaningful core modeling elements that better
describe ubiquitous business rules.

• helping process personnel to represent, understand, and
convey the ubiquitous business processes in a straightfor-
ward fashion.

• laying the groundwork to deploying a myriad of ubiq-
uitous computing capabilities such as context awareness,
augmented reality, sustainability and ambient intelligence.

• being the reference of any Validation and Verification and
transformation initiative of uBPMN models.

To evolve the contribution of this paper, we plan on keep-
ing up with the advances of ubicomp and conducting separate
experiments to study its impact on business process manage-
ment as well as the completeness of uBPMN. We also plan on
proposing a verification and validation technique for uBPMN
models. Afterwards, we aim to tackle the transformation of
uBPMN models into working code and extend a framework that
was partly built by our research team at the Human-Computer
Interaction Institute, Carnegie Mellon University. The frame-
work is named AWARE and is accessible via awareframe-
work.com.

References

[1] Abowd, G., Dey, A., Brown, P., Davies, N., Smith, M., Steggles, P.,
1999. Towards a better understanding of context and context-awareness.
In: Handheld and Ubiquitous Computing. Springer, pp. 304–307.

[2] Ahson, S. A., Ilyas, M., 2008. RFID handbook: applications, technology,
security, and privacy. CRC press.

[3] Aoumeur, N., Fiadeiro, J., Oliveira, C., 2004. Towards an architectural
approach to location-aware business process. In: Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2004. WET ICE 2004. 13th
IEEE International Workshops on. IEEE, pp. 147–152.

[4] Appel, S., Kleber, P., Frischbier, S., Freudenreich, T., Buchmann, A.,
2014. Modeling and execution of event stream processing in business pro-
cesses. Information Systems.

[5] Azuma, R. T., et al., 1997. A survey of augmented reality. Presence 6 (4),
355–385.

[6] Bauer, C., Strauss, C., Stummer, C., Trieb, A., 2013. Context-aware ser-
vices in cooperative value chains: a key player-centred approach. Scalable
Computing: Practice and Experience 14 (3).

[7] Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., Kuropka, D., 2004.
Configurative process modeling–outlining an approach to increased busi-
ness process model usability. In: Proceedings of the 15th IRMA Interna-
tional Conference. pp. 1–12.

[8] Becker, J., Rosemann, M., von Uthmann, C., 2000. Guidelines of business
process modeling. In: Business Process Management. Springer, pp. 30–
49.

14

[9] Bocciarelli, P., D’Ambrogio, A., 2011. A bpmn extension for modeling
non functional properties of business processes. In: Proceedings of the
2011 Symposium on Theory of Modeling & Simulation: DEVS Integra-
tive M&S Symposium. Society for Computer Simulation International,
pp. 160–168.

[10] Braun, R., 2015. Behind the scenes of the bpmn extension mechanism
principles, problems and options for improvement. In: Model-Driven En-
gineering and Software Development (MODELSWARD), 2015 3rd Inter-
national Conference on. IEEE, pp. 1–8.

[11] Braun, R., Esswein, W., 2014. Classification of domain-specific bpmn
extensions. In: The Practice of Enterprise Modeling. Springer, pp. 42–57.

[12] Braun, R., Schlieter, H., 2014. Requirements-based development of bpmn
extensions: The case of clinical pathways. In: Interrelations between Re-
quirements Engineering and Business Process Management (REBPM),
2014 IEEE 1st International Workshop on the. IEEE, pp. 39–44.

[13] Bucchiarone, A., Marconi, A., Pistore, M., Raik, H., 2012. Captevo:
Context-aware adaptation and evolution of business processes. In:
Service-Oriented Computing-ICSOC 2011 Workshops. Springer, pp.
252–254.

[14] Bucchiarone, A., Marconi, A., Pistore, M., Raik, H., 2012. Dynamic
adaptation of fragment-based and context-aware business processes. In:
Web Services (ICWS), 2012 IEEE 19th International Conference on.
IEEE, pp. 33–41.

[15] Chang, J. F., 2005. Business process management systems: strategy and
implementation. CRC Press.

[16] Charalabidis, Y., 2014. Revolutionizing Enterprise Interoperability
through Scientific Foundations. IGI Global.

[17] Consolvo, S., McDonald, D. W., Toscos, T., Chen, M. Y., Froehlich, J.,
Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., et al.,
2008. Activity sensing in the wild: a field trial of ubifit garden. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, pp. 1797–1806.

[18] Cortes-Cornax, M., Dupuy-Chessa, S., Rieu, D., Mandran, N., 2014.
Evaluating the appropriateness of the bpmn 2.0 standard for modeling
service choreographies: using an extended quality framework. Software
& Systems Modeling, 1–37.

[19] Czarnecki, K., Helsen, S., 2003. Classification of model transformation
approaches. In: Proceedings of the 2nd OOPSLA Workshop on Genera-
tive Techniques in the Context of the Model Driven Architecture. Vol. 45.
USA, pp. 1–17.

[20] Czarnecki, K., Helsen, S., 2006. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal 45 (3), 621–645.

[21] da Cunha Mattos, T., Santoro, F. M., Revoredo, K., Nunes, V. T., 2014.
A formal representation for context-aware business processes. Computers
in Industry 65 (8), 1193–1214.

[22] Das, M., Deb, M., Wilkins, M., 2011. Oracle Business Process Manage-
ment Suite 11g Handbook. McGraw-Hill Osborne Media.

[23] de Freitas, A. A., Dey, A. K., 2015. The group context framework: An ex-
tensible toolkit for opportunistic grouping and collaboration. In: Proceed-
ings of the 18th ACM Conference on Computer Supported Cooperative
Work & Social Computing. ACM, pp. 1602–1611.

[24] Dumas, M., La Rosa, M., Mendling, J., Reijers, H. A., 2013. Fundamen-
tals of business process management. Springer.

[25] Ebad, R., 2014. Ubiquitous computing: A brief review of impacts and
issues. Scalable Computing: Practice and Experience 2 (3), 59–68.

[26] Fleisch, E., 2001. Business perspectives on ubiquitous computing. M-Lab
working paper (4), 83–87.

[27] Friedenstab, J., Janiesch, C., Matzner, M., Muller, O., 2012. Extending
bpmn for business activity monitoring. In: System Science (HICSS), 2012
45th Hawaii International Conference on. IEEE, pp. 4158–4167.

[28] Friedewald, M., Raabe, O., 2011. Ubiquitous computing: An overview of
technology impacts. Telematics and Informatics 28 (2), 55–65.

[29] Froehlich, J., Dillahunt, T., Klasnja, P., Manko↵, J., Consolvo, S., Har-
rison, B., Landay, J. A., 2009. Ubigreen: investigating a mobile tool for
tracking and supporting green transportation habits. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM,
pp. 1043–1052.

[30] Gagne, D., Trudel, A., 2009. Time-bpmn. In: Commerce and Enterprise
Computing, 2009. CEC’09. IEEE Conference on. IEEE, pp. 361–367.

[31] Giner, P., Torres, V., Pelechano, V., 2008. Jisbd2007-06: Building ubiqui-
tous business process following an mdd approach. Latin America Trans-

actions, IEEE (Revista IEEE America Latina) 6 (4), 347–354.
[32] Jung, J.-Y., Kong, J., Park, J., 2008. Service integration toward ubiquitous

business process management. In: Industrial Engineering and Engineer-
ing Management, 2008. IEEM 2008. IEEE International Conference on.
IEEE, pp. 1500–1504.

[33] Kopetz, H., 2011. Internet of things. In: Real-Time Systems. Springer,
pp. 307–323.

[34] Kuniavsky, M., 2010. Smart Things: Ubiquitous Computing User Expe-
rience Design: Ubiquitous Computing User Experience Design. Elsevier.

[35] Lijding, M., Meratnia, N., Benz, H., Matysiak Szóstek, A., 2007. Smart
signs show you the way. I/O Vivat 22 (4), 35–38.

[36] Liu, T., Bahl, P., Chlamtac, I., 1998. Mobility modeling, location track-
ing, and trajectory prediction in wireless atm networks. Selected Areas in
Communications, IEEE Journal on 16 (6), 922–936.

[37] Lodhi, A., Küppen, V., Saake, G., 2011. An extension of bpmn meta-
model for evaluation of business processes. Scientific Journal of Riga
Technical University. Computer Sciences 43 (1), 27–34.

[38] Lowe, D. G., 2004. Distinctive image features from scale-invariant key-
points. International journal of computer vision 60 (2), 91–110.

[39] Martinho, R., Domingos, D., 2014. Quality of information and access cost
of iot resources in bpmn processes. Procedia Technology 16, 737–744.

[40] Meyer, S., Ruppen, A., Magerkurth, C., 2013. Internet of things-aware
process modeling: integrating iot devices as business process resources.
In: Advanced Information Systems Engineering. Springer, pp. 84–98.

[41] Mili, H., Tremblay, G., Jaoude, G. B., Lefebvre, É., Elabed, L., Boussaidi,
G. E., 2010. Business process modeling languages: Sorting through the
alphabet soup. ACM Computing Surveys (CSUR) 43 (1), 4.

[42] OMG, 2011. Business process model and notation 2.0. Tech. rep., Object
Management Group, Washington DC, USA.

[43] Pascalau, E., Nalepa, G. J., Kluza, K., 2013. Towards a better understand-
ing of context-aware applications. In: Computer Science and Information
Systems (FedCSIS), 2013 Federated Conference on. IEEE, pp. 959–962.

[44] Pillat, R. M., Oliveira, T. C., Alencar, P. S., Cowan, D. D., 2015. Bpmnt:
A bpmn extension for specifying software process tailoring. Information
and Software Technology 57, 95–115.

[45] Ploesser, K., Recker, J. C., Rosemann, M., 2010. Building a methodology
for context-aware business processes: Insights from an exploratory case
study. Association for Information Systems.

[46] Preuveneers, D., Van den Bergh, J., Wagelaar, D., Georges, A., Rigole,
P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., De Bosschere, K.,
2004. Towards an extensible context ontology for ambient intelligence.
In: Ambient intelligence. Springer, pp. 148–159.

[47] Rademakers, T., 2012. Activiti in Action: Executable business processes
in BPMN 2.0. Manning Publications Co.

[48] Recker, J., Rosemann, M., Indulska, M., Green, P., 2009. Business pro-
cess modeling-a comparative analysis. Journal of the Association for In-
formation Systems 10 (4), 1.

[49] Reichert, M., Weber, B., 2012. Business process compliance. In: En-
abling Flexibility in Process-Aware Information Systems. Springer, pp.
297–320.

[50] Richard, W., 1987. A sensor classification scheme. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control, UFFC-34 2.

[51] Rodrı́guez, A., Caro, A., Cappiello, C., Caballero, I., 2012. A BPMN ex-
tension for including data quality requirements in business process mod-
eling. Springer.

[52] Rodrı́guez, A., Fernández-Medina, E., Piattini, M., 2007. A bpmn ex-
tension for the modeling of security requirements in business processes.
IEICE transactions on information and systems 90 (4), 745–752.

[53] Roman, M., Al-Muhtadi, J., Ziebart, B., Campbell, R., Mickunas, M. D.,
2003. System support for rapid ubiquitous computing application devel-
opment and evaluation. In: System Support for Ubiquitous Computing
Workshop (UbiSys’ 03) in conjunction with UbiComp. Vol. 3.

[54] Rozinat, A., van der Aalst, W. M., 2006. Conformance testing: Measuring
the fit and appropriateness of event logs and process models. In: Business
Process Management Workshops. Springer, pp. 163–176.

[55] Sadiq, S., Governatori, G., Namiri, K., 2007. Modeling control objec-
tives for business process compliance. In: Business process management.
Springer, pp. 149–164.

[56] Saeedi, K., Zhao, L., Sampaio, P. R. F., 2010. Extending bpmn for sup-
porting customer-facing service quality requirements. In: Web Services
(ICWS), 2010 IEEE International Conference on. IEEE, pp. 616–623.

15

[57] Salatino, M., Aliverti, E., 2012. jBPM5 Developer Guide. Packt Publish-
ing.

[58] Schultz, M., Radlo↵, M., 2014. Modeling concepts for internal controls
in business processes–an empirically grounded extension of bpmn. In:
Business Process Management. Springer, pp. 184–199.

[59] Sears, A., Jacko, J. A., 2009. Human-Computer Interaction Fundamen-
tals. CRC Press.

[60] Smith, A. D., O↵odile, F., 2002. Information management of automatic
data capture: an overview of technical developments. Information Man-
agement & Computer Security 10 (3), 109–118.

[61] Stroppi, L. J. R., Chiotti, O., Villarreal, P. D., 2011. A bpmn 2.0 extension
to define the resource perspective of business process models. In: XIV
Iberoamerican Conference on Software Engineering.

[62] Stroppi, L. J. R., Chiotti, O., Villarreal, P. D., 2011. Extending bpmn
2.0: method and tool support. In: Business Process Model and Notation.
Springer, pp. 59–73.

[63] Sungur, C. T., Spiess, P., Oertel, N., Kopp, O., 2013. Extending bpmn
for wireless sensor networks. In: Business Informatics (CBI), 2013 IEEE
15th Conference on. IEEE, pp. 109–116.

[64] Thacker, B. H., Doebling, S. W., Hemez, F. M., Anderson, M. C., Pepin,
J. E., Rodriguez, E. A., 2004. Concepts of model verification and valida-
tion. Tech. rep., Los Alamos National Lab., Los Alamos, NM (US).

[65] Tranquillini, S., Spieß, P., Daniel, F., Karnouskos, S., Casati, F., Oertel,
N., Mottola, L., Oppermann, F. J., Picco, G. P., Römer, K., et al., 2012.
Process-based design and integration of wireless sensor network applica-
tions. In: Business Process Management. Springer, pp. 134–149.

[66] Weiser, M., 1991. The computer for the 21st century. Scientific american
265 (3), 94–104.

[67] Wilson, A. D., 2007. Sensor-and recognition-based input for interaction.
Human-Computer Interaction, 153.

[68] Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C., 2009.
Model-driven business process security requirement specification. Jour-
nal of Systems Architecture 55 (4), 211–223.

[69] Yousfi, A., de Freitas, A., Dey, A., Saidi, R., 2015. The use of ubiquitous
computing for business process improvement. Services Computing, IEEE
Transactions on Article in Press.

[70] Yousfi, A., Dey, A. K., Saidi, R., Hong, J.-H., 2015. Introducing decision-
aware business processes. Computers in Industry 70, 13–22.

[71] Yousfi, A., Saidi, R., Dey, A. K., 2015. Variability patterns for business
processes in bpmn. Information Systems and e-Business Management,
1–25.

[72] Zhu, X., Recker, J., Zhu, G., Maria Santoro, F., 2014. Exploring location-
dependency in process modeling. Business Process Management Journal
20 (6), 794–815.

16

