
We take apart a single change scenario for detailed analysis. We extend the
sample scenario by applying the add condition change operation in combination
with the versioning change strategy. Concretely, the condition of 99% of all
meters has been added while still having to satisfy all existing constraints. This
change is visualized in Fig. 1. The color of the nodes identifies the associated
ISC: white being the common path for shared attributes (i.e, same context,
connection and condition). Orange nodes and edges represent the old ISC,
whereas the blue nodes and edges represent the new ISC. As can be seen the
impact reaches all levels of the rete structures: alpha as well as beta networks.

Static and Dynamic Impacts on the Alpha Network.
One static impact on the alpha network is due to the router creating the

alpha nodes A4, representing old process instances whose instance start time is <
tC , and correspondingly A6, representing new process instances started after tC .
The alpha node filter for catching all instance start times stays white due to it
being shared by both A4 and A6. On the dynamic level, we trigger a reindexing
process where facts are matched for the newly created alpha nodes A4 and
A6. These are fed through the alpha network to determine which ISC instances
fall under the different ISC versions. We assume that there is an event with

Beta Network

RB J1

B1

J2

B2

J3

B3

JT2

JT1

ISC Base
ISC1: When starting the read-out at 00:00, 99% of all meters should be read
out within 6 hours and aggregated readout value should not exceed X.

ISC1 = A1 ∧ A2 ∧ A3 ∧ A4 ∧ A5

Action Part Beta & Joins
Alpha Network

[f3, f4]

[f5, f6]

A2

A3 (?id, readout, ?readout_value)

“2016-06-23T00:00:00” <=
?timestamp <=

“2016-06-23T06:00:00”

(?id, timestamp, ?timestamp)

(?id, type, “read-out meter end”)
[f1, f2]

A1

R2

Action: add/update facts
(vars, accumulated_values,
?acc_values + ?value)

R1

Action: send alert
threshold exceeded

J4

JT4

J5

(?acc_values + ?value) <= THRESHOLDJT6

(?acc_values + ?value) > THRESHOLDJT5

JT4

J6

B4

JT3

(?id, instance_start_time, ?ist)

(vars, accumulated_values, ?
acc_values)

A5
[f7]

Router (Old)

Old Version

?ist < tC
A4

[f8, f9]

R6

Sending Success Alert with
?timestamp information

Action: send alert

R3

Action: add/update facts
(vars, num_meters,
?num_meters + 1)

R5

Action: add/update facts
(vars, accumulated_values’,
?acc_values’ + ?value)

R4

Action: send alert
threshold exceeded

J8

?num_meters > 0.99 * total_meters JT11

B6

J10

J9

JT3

J7

B5

JT7

JT10

(acc_values’ + ?value) > THRESHOLDJT8

(acc_values’ + ?value) <=THRESHOLDJT9

JT7

(vars, num_meters, ?
num_meters_val)

(vars, accumulated_values’, ?
acc_values’)

A7
[f10]

[f11]

New Version

Router (New)

?ist >= tCA6

A8

[]

Legend

A1..AN Alpha Node J1..JN Join NodeB1..BN Beta Node R1..RN Production Node Join TestJT

Knowledge Base
f1: ((1,1), type, “read-out meter end”)

f3: ((1,1), timestamp,“2016-06-23T04:32:00”)

f5: ((1,1), value, 346)

f7: (vars, accumulated_values, 40530)

f2: ((1,2), type, “read-out meter end”)

f4: ((1,2), timestamp, “2016-06-23T04:32:00”)

f6: ((1,1), value, 455)

f11: (vars, num_meters, 0)

f8: ((0,1), instance_start_time, “2016-06-23T00:00:15”)
f9: ((0,2), instance_start_time, “2016-06-23T00:00:45”)

f10: (vars, accumulated_values’, 40530)

Figure 1: Change Impact Evaluation: Adding Condition + Versioning

1

eventid = 0 that registers the process instance’s start time, which in Fig. 1 are
transformed to facts f8 and f9 representing the two process instances goverened
under ISC old. There are no facts yet matching A6 for ISC new. The second
static impact on the alpha network is due to namespacing of the shared variables
in the old ISC. Noticeable here is that A5 is reused from the old ISC, responsible
for maintaining the shared variable of accumulated readout values. New alpha
nodes A7 and A8 are created to maintain the state for the new ISC. On the one
hand A7 is the result of namespacing the shared variable accumulated values
by copying its value to a new shared variable accumulated values′ and on the
other a new shared variable is introduced (A8) to maintain the actual number
of meters being read out. On the corresponding dynamic impact for this part of
the alpha network, the facts f10 and f11 are initialized and matched to A7 and
A8 respectively. Whereas f10 is a simple copy of an existing shared variable
(accumulated values), f11 is initialized as the counter 0. A copy implies the
reuse of already computed state for ISC new, and thus considers all of the
evaluated events up to the point at tC . From this point on the two shared
variables accumulated values and accumulated values′ diverge in processing
of subsequent facts and represent the ISC instances of ISC old and ISC new
respectively. Old process instances under the effect of ISC old would only update
accumulated values. Similarly, only new process instances started after tC
update the state accumulated values′, effectively isolating the two different
ISC versions.

Static and Dynamic Impacts on the Beta Network Structurally, the
same beta and join nodes are reused for the old ISC (marked in orange): J4, B4,
J5, J6, R1 and R2. One static impact is the linking of A4 (for activating the
path for instance start time with < tC) to the old ISC’s top most condition. For
the new ISC, a similar static construct covering the migrated shared variables,
conceptually handling the same logic as the old ISC can be identified with J7, B5,
J8, J9, R4 and R5. J7 serves as the top-most join node responsible for activating
the sub graph for the new ISC. This node is linked from the alpha node A6,
responsible for filtering new process instances started after tC . A new production
node R3 is created that increments the number of meters that performed a read
out value event (for ISC new). This production node will always be fired when
J7 is activated. Another new subgraph are the nodes B6, J10 and R6 which
is responsible for verifying that the newly added 99% of all meter condition is
satisfied. The key link is the alpha node A8’s connection to J10, to perform the
critical join test for checking the added condition. Compensating actions might
need to be defined for revoking possibly already executed alerts.

Activation Paths: Old ISC vs New ISC An activation path following
ISC new would be taken from A6 → J7, directly firing production node R3
for updating the number of meters. Subsequently, B5 is activated to store
tokens, then J8 and J9 are tested in parallel to compute whether the threshold
is exceeded. Depending on the result, either R4 or R5 is fired. In case J9
succeeds (the accumulated readout value is not yet exceeded) then tokens are
stored in B6, after which J10 is tested to test whether the 99% requirement has
been achieved or not. If so, R6 is fired for sending a success alert, otherwise no

2

alert is sent. If the old rule is checked, by finding an already running instance
(instance start time < tC), then A4 is activated followed by the J4 which only
tests for equal ?id part. On success, tokens are stored in B4. Joins J5 and J6 are
tested in parallel. If the threshold is exceeded then R1 is fired for sending the
appropriate alert, otherwise R2 is fired for updating the accumulated readout
value shared variable. While this change scenario highlights ISC versioning, it
incorporates the core state migration step for shared variables which is also a
common part of the other change strategies: migration and clean state. The
clean state strategy would simply reset the state: accumulated values to 0,
and add a router component solely handling process instances started after
tC . Since the added condition requires a new shared variable: num meters, it
is not necessary to reason about it at this point. Although further changes
to the new rule would require both shared variables to be reasoned about for
state migration: accumulated values and num meters. Change operations of
type Delete would be handled similarly: maintain diverging ISC with shared
attributes (versioning and clean state) and independent state, keep the old ISC
until all associated process instances are completed, migrate shared variables
and define compensating actions.

3

