
1 Impacts of Change Operation Delete

Delete Context Removing a context from an ISC will prevent it from moni-
toring future events of the corresponding process execution. This does not block
such events from being handled as they still might be used by different ISC. Such
a change implies a modification of the ISC structure (static impact) to enable
filtering the appropriate event types, i.e., the router. Using the router on top of
the inference engine provides a more generic solution that is not dependent of
the rule matching algorithm, e.g., Rete [1].
Versioning: the old version is not removed until all past instances terminate.
The new version is added in parallel, and all its shared variables are reinitialized.
In the example of Fig. 1, the old counter for both melanoma and dermatitis
patients is kept for the old version, and a new counter for dermatitis only is
created for the new version. The latter should not include dermatitis patients
that arrived before the change time tc. The router is responsible for correlating
facts with the corresponding version.
Migration: old shared variables are reused as they include facts of past process
instances (started before tc). This entails counting dermatitis patients arrived
before and after tc for the day. Migration prevents querying the working mem-
ory (a base that contains all facts) from the scratch and reuses matching results
of the ISC old. Indeed, the ISC instance does not only store information about
the patients counter but also refers to all facts that are consumed by it (ref-
erences to melanoma and dermatitis patients). This simplifies the recounting
during migration.
Clean state: will utilize the new version only, remove the old one and all its
variables. All facts of old process instances are ignored. A routing is necessary
to ignore future events related to old process instances.
Context change might result in inconsistencies with respect to behavior/actions
that already fired before tc. Indeed, actions might block a set of process in-
stances when a constraint matches (e.g., synchronization). When changing the
corresponding ISC, compensation actions need to be enacted to unblock those
process instances. This problem needs to be dealt with for all strategies, but
most particularly for clean state as it ignores past process instances. For exam-
ple, assume that the deletion of the context melanoma treatment process from
the ISC (cf. Fig. 1) takes effect at 12pm and the limit of 60 patients (e.g., 40 for
blood test and 20 for urine test) was already reached by that time. The change

-ISC When	star*ng	the	read-out	of	00:00	values	99%	of	all	
meters	should	be	read	out	within	6	hours.	

BEHAVIOR For	100	(simultaneous)	ad	hoc	readouts	,	if	10	meter	
checks	exceed	6	hours	then	send	an	alert.

For	100	(simultaneous)	ad	hoc	readouts	,	if	10	meter	checks	
exceed	6	hours	then	send	an	alert	and	stop	the	readouts.

When	star*ng	the	read-out	of	00:00	values,		99%	
meters	should	be	read	out	within	6	hours.	

When	star*ng	the	read-out	at	00:00,	99%	of	all	meters	
should	be	read	out	within	6	hours	and	readout	value	
should	not	exceed	X.	

CONDITION

AFTER

	At	12:00,		the	average	readout	of	all	meters	should	
have	a	value	less	than	X

The	number	of	pa*ents	accepted		for	derma**s	
treatments	should	not	exceed	60	per	day.	

The	number	of	pa*ents	accepted		for	derma**s	and	
melanoma	treatments	should	not	exceed	60	per	day.	

BEFORE

	At	12:00	and		14:00,		the	average	readout	of	all	meters	
should	have	a	value	less	than	XCONNECTION

CONTEXT

DELETE

BEFOREAFTERADD

Figure 1: Change Operations: Delete and Add Examples

1

will reduce the total number of patients to 40, and consequently the status of
the ISC will change from fired to not fired, and it will be possible to accept
new blood test patients. The problem, is that patients that were rejected before
the change and after the ISC has fired, need also to be considered through the
actions if possible. Note that compensation actions are domain and scenario
specific and it is not always possible to identify compensation actions.

Delete Connection Deleting a connection reduces the number of event
types to be monitored by the changed ISC. The event type might refer to a
process task, resource attribution or a time trigger. If there exist a context of the
changed ISC that depends solely of that connection, then the latter will also be
deleted as a consequence. Deleting connections related to process events follows
the same procedure as delete context. However, deleting a time trigger might
have less impact on the ISC structure, and consequently migration or versioning
become simpler. For example, in Fig. 1, the average of meter readouts changed
from being checked at 12:00 and 14:00 to only 12:00. This means that the ISC
is triggered only one time instead of two, an consequently readouts coming after
12:00 will not be considered. If the change becomes effective after 12:00 then the
shared variables and the ISC instance will be reinitialized (the read out counter
is set to zero) for the day, unless they are used by another ISC.

Delete Condition An ISC might involve multiple conditions. Deleting a
condition releases a constraint on the events/facts. This impacts directly the
structure of the ISC, which should be dissociated from that condition. The
condition structure is solely removed if it is not used by any other ISC. While
versioning will keep using that condition for future events of process instances
started before tc, migration will reuse facts/events that already checked by the
old ISC version. If we consider c1 ∧ c2 as the conditions of the changed ISC
and c1 is the deleted one, then the set of facts that already matched c1 ∧ c2
will still match c2 alone. Thus, migration can reuse the current state of the
old version and all matched facts. However, it is possible to have facts that
were not considered before the change because they did not match c1, which is
no longer required. Consequently it becomes necessary to also check whether
those facts are still in the working memory and reuse them. Note that the
ordering of conditions is also important in migration. For example, if c2 is the
deleted condition, then there is no need for re-querying the working memory as
we already keep track of all facts that matched c1 before they are filtered by c2.
In Fig. 1, the ISC instance initially fires if the total readout value exceeds X or
99% of all readouts did not finish within 6 hours. Then, consider that the value
X has been reached before the 6 hours has elapsed, and the change operation
(i.e., deletion of the threshold x condition) becomes effective after the ISC has
fired and before the 6 hours constraint expires. In this case it is possible to
reconsider the ISC status and continue checking the facts in order to meet the
second condition; i.e., 99% of readouts should have been finished within 6 hours.
Firing an ISC entails the execution of the actions specified in its behavior part.
As such, migrating a fired ISC after a deletion of a condition not only reconsiders
the facts associated with it and those in the working memory, but also the
actions that are already executed as a consequence of the firing. This goes from

2

a simple alert that cannot be undone to actions on process tasks that can be
migrated depending on the process scenario. For example an action of type wait
on a task can be undone by a action of type continue.

Delete Behavior As aforementioned, a behavior is an action that is exe-
cuted if an ISC has fired; e.g., stop or wait a task. Deleting an action does not
have any effect on the rule structure in the ISC monitor as it does not alter its
condition or linkage, but might have effects on the process instances affected
by the action. For example, removing the action stop the readouts will have
impacts on the process instances that have been stopped as a consequence of
this action. In this case, the action can be overridden by continuing the stopped
readouts. However, not all actions can be undone or revoked.

Delete ISC The deletion of an ISC releases restrictions on the process
instances. This entails that three parts constituting the ISC will be removed.
The versioning strategy will keep the ISC until all old instances terminate, while
migration will behave as clean state and remove restrictions on both old and
new process instances.

References

[1] Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell. 19(1), 17–37 (1982)

3

