5. Implementation

As part of the CRISP Project, a framework has been developed to test the elaborated
change negotiation and propagation algorithms for collaborative processes. The
framework already provides functionalities for importing process models in form
of BPMN 2.0 XML, deriving public models out of choreography models as well
as inserting new fragments into existing models. Within the importing process,
the BPMN models are converted into a RPST without loosing any information
on the control flow and connection objects of the original model. This resulting
graph structure enables model manipulation and analysis techniques. In order to
save the effort of implementing the same or similar graph model structure for the
automatic process collaboration generator, it was decided to integrate it into the
existing framework. Hence, the structure and it’s complementary components and
services can be utilized with minor adaptations.

The following chapter describes the internal process model representation struc-
ture and the implemented class structure of the automatic generator and translator.

5.1. Internal Process Model Representation

The framework internal process model representation utilizes the jBPT! library,
which was developed by Polyvyanyy et. al [19] and facilitates the modeling of
process models as RPST. Figure 5.1 shows an excerpt of the core structure of the
library. The structure enables the creation of different types of graphs to support
the capturing of various process modeling languages, such as petri nets, EPC? or
BPMN.

For the purpose of constructing BPMN process models, an implementation of the
AbstractMultiDirected Graph class is suitable. A multi directed graph represents a
graph whose vertices can be connected among themselves through multiple directed
edges [20]. Figure 5.1 also shows that all graph models are typed with generics.
In the context of a multi directed graph model, the parameter F is bound to a an
instance of IDirectedEdge<V >, whereas parameter V is bound to an instance of
1Vertexz.

!Business Process Technologies for Java - https://code.google.com/p/jbpt/
2Event-driven process chains

42

5. Implementation

]| I160bject *{)‘

Gobject K}t !

fzg exiends Toiraccedparedgects, | {>{ Vertex
:
|

V_extends IVertex>

|
i | w
i i i
| i |
<E extends IDirectedEdge<V>, ! 1 — ¢V extends IVertex> | !

L ___V extends IVertex> ___| U | ppetractinmantdas | C" """ |
AbstractMultiDirectedGraph (1 AbstractHyperEdge |
i T‘ |

i

<E extends IDirectedEdge<Vs, !

. 1 1<V extends IVertex>|

L___V extends Ivertex> | prirpriiiel R

AbstractDirectedGraph Vertex AbstractDirectedHyperEdge (_________

L‘l — <V extends IVertex> | 1 <V extends IVertex> \ |

,,,,,,,,,,, |
ProcessModel PetriNet ‘ Node AbstractDirectedEdge D IDirectedEdge 3
|
|
T i F % T |
|
Bpmn Epc NetSystem Place Transition Flow [

Figure 5.1.: Class and interface hierarchy of jJBPT (Source: [19])

In order to utilize the jBPT structure to build any type of BPMN process model,
all specific BPMN flow objects must therefor implement the IVerter interface. The
flow objects, for instance tasks or gateways, are then in turn connected through
Edges, which represent the BPMN sequence flow to create the graph and therefor
the process model. How the jBPT library is incorporated and utilized by the frame-
work is illustrated in figure 5.2. The intensive use of interfaces enables the reuse
of flow objects that are part of different model types. For instance, gateways and
events are used in all four model types. For the sake of clarity, Figure 5.2 only shows
model specific flow objects that are appropriate for BPMN choreography models.
Table 5.1 lists all BPMN flow objects, that are supported by the framework to create
process collaborations and their different models.

Choreography Model Collaboration Model Public Model Private Model
Start Event | | | |
End Event | | |
Parallel Gateway | |] |
Exclusive Gateway | | | |
Interaction | O O O
Task O |] |
Send Task O | | |
Receive Task O | [] |

Table 5.1.: Overview of supported BPMN flow objects

Within the framework, all four model types support the flow objects Start Event,
End Event, Parallel Gateway and Fxclusive Gateway. These are basic control flow
objects that are not specific to any model type in BPMN. Additionally available,

43

5. Implementation

for collaboration, public and Private Models, are the activities Task, Send Task and
Receive Task. According to the BPMN 2.0 specification, the activity Task represents
an Abstract Task [8]. An Abstract Task is a task that is not further specified. There
are several further specified tasks in BPMN;, including the also supported Send and
Receive Task. Since the focus of the CRISP project is on collaborative processes and
the message exchange between the participating partners, it is mandatory that these
two messaging activities are also specified within the framework. For the remaining
activities that are not part of the message flow, it is in this context not relevant if the
task is actually a User, Manual, Service or Script task. The only flow object specific
for Choreography Models is the Choreography Task or Interaction, the equivalent of
a Send and Receive task sequence in a collaboration model.

E->IDirectedEdge, N->IVertex V-=Vertex —
T « Interf; » .
AbstractMultiDirectedGraph<E, N> -3 AbstractDirectedEdge<V> -3 nieriace UJ
A IVertex
A 3
E->Edge, N->INode N->INode
. . « Interface »
MultiDirectedGraph<E, N> +-————---—3» EdgecN> 1~ INode
Fiy
: « Interface » « Interface » « Interface »
No;;le IChoreographyNode IPubli IPri
? T 7
= « Interface » « Interface »
or T IEvent IGateway
i A A
Interaction Event Gateway
iy
2 | I
n_ Message Role
™ AndGateway XorGateway

Figure 5.2.: Framework Model Representation Structure

5.2. Class Structure and Data Model

The diagram shown in Figure 5.3 represents the simplified class structure of the
implemented components, that are necessary for generating an entire process col-
laboration, starting with the generation of the Choreography Model that complies
to imposed compliance rules, leading to deriving the Public and Private Models out
of it and finishing with the translation to BPMN/XML. The numbers indicate the
order in which the components are instantiated. In the following, each class, their
core functions and their relation with to the algorithms, introduced in the section
of conception, will be described.

44

5. Implementation

Overall
Process Controller

Compliance
Controller

Collaboration
Generator

Choreography
BPMN Model Model Tracking
Translator
Generator

Figure 5.3.: Class Structure Random Collaboration Generator

The logic of coordinating the entire generation process (see Algorithm 1) is imple-
mented in the class CollaborationGenerationController. It’s purpose is to orchestrate
the whole process and functionalities provided by the other components. Also the
parametric build constraints and compliance rules, on which the collaboration gen-
eration is based, are specified within this class.

The class ChoreographyModelGenerator encapsulates the functionality of gener-
ating a random choreography model. Figure 5.4 shows the extended class structure
of the Choreography Model Generator component and the important instance vari-
ables and implemented methods of each class. The main class of this component
is the ChoreographyModelGenerator class. Within this, the algorithm for gener-
ating random models, explained in the chapter of conception (see Algorithm 6),
is implemented within the build() method. The thereby used functions getRan-
domNodeType() (see Algorithm 2), getRandomBranch() (see Algorithm 3) and ge-
tRandomBranchAmount() are also implemented within this class, whereby all utilize
methods that are implemented within the ModelTracking class. This includes mainly
methods for updating the model and determining the amount of free and reserved
interactions. Within the ModelTracking a set of splits is contained which represents
the actual model as branches and associated nodes. The different node types all
implement the IChoreographyNode interface.

45

=1 splits: ArrayList=Split>
} getReserved nteractions(): Integer
4 getFreelnteractions(): Integer

1 4 getRandomBranchCount(): Integer
3 addMessageFlow()
getRandomPossibleParticipant(): Role
{3 closeGraph()
1.
split
i splitNode: Gateway Branch
=1 mergeNode: Gateway 3 split: Split

5l branches: ArraylList<Branch=
=l closed: Boolean

3 isClosable(): Boolean

{3 close(): Boolean

{3 addBranch(Branch)

5. Implementation

ChoreographyModelGenerator

£l graph: MultiDirectedGraph<Edge<IChoreographyNode>, IChoreographyMNode>
1 remainingNodeCounts: HashMap<NodeType, Integer>

[l participants: ArrayList<Role>
51 modelTracking: ModelTracking

ModelTracking -
3 build()

4 getRandomBranch(NodeType)

5 closed: Boolean

4# isClosable(): Boolean
4 close(): Boolean

4 addNode()

5l nodes: AmrayList<ChoreographyMode> | 1

#; getRandomPossibleNodeType(): NodeType
B ## getNextNode(NodeType): IChoreographyNode

« Interface »
* IChoreographyNode

Figure 5.4.: Class Structure - ChoreographyModelGenerator

The introduced logic of specifying and imposing global compliance rules on a
choreography model is implemented within the class ComplianceController. 1t also
utilizes the same instance of the ModelTracking class, that represents the finished
model in order to find possible assignments for the imposed interaction order.

ComplianceController
51, complianceRules: ArrayList<CompliancePattern>
= Order: ArrayList n>

1 orderDependencies: HashMap<Interaction, ArrayLisi<interaction>>

=1 possibleAssignments: HashMap<Interaction, ArrayList<Interaction=> |1 ™!
=1 motelAssignments: HashMap<Interaction, Interaction> il =

=1 modelTracking: ModelTracking

43 addRule(CompliancePattern)

4} conflictCheck(CompliancePattern): Boolean
4 orderlnteractions()

4 determinePossibleAssignments()

4 assigninteraction(Interaction)

CompliancePattern
[, p: Interaction
[, label: String
5. modelTracking: ModelTracking
i findPossibleAssignments()

OrderPattern

5 possibleAssignments: HashMap<Interaction, ArrayList<interaction>>

‘OccurrencePattern
=] bl gnments: F ap , Interaction> Eq: Interaction
Exists Universal Precedes
& fi ibleA:) 4 find) 4 findPossibleAssignments()

LeadsTo
42 findPossibleAssignments()

Figure 5.5.: Class Structure - ComplianceController

Figure 5.5 represents the class class diagram of the implemented component.
Within the ComplianceController class, the procedure for conflict checking between

the specified rules (see Algorithm 7) is implemented by the conflict Check(CompliancePattern)

method. The assign() method orchestrates the whole assignment process by fist trig-
gering the findPossibleAssigment() method of each involved compliance pattern by

46

5. Implementation

calling the determinePossibleAssignments() method. The findPossibleAssigment()
methods determines the possible model positions for each pattern type individually
based on the rules described in Definitions 4.3.2 - 4.3.5. In the next step, the order
of involved interactions is determined by the orderInteractions() method. Based on
the resulting order, the interactions are tried to be assigned into the choreography
model by the assigninteraction(Interaction) method (see Algorithm 8).

The class CollaborationGenerator provides the functionalities of deriving the pub-
lic and private models from the generated choreography model. This component is
already implemented within the framework and is therefor not described as a part
of the implementation.

At last, the translation of the internal model representation to BPMN /XML,
based on the mappings described in Section 4.4 of the conceptional chapter, is imple-
mented within the BPMN Translator class. The process is a typical XML generation
process, utilizing the established jDOM? library.

5.3. Conclusion

In this chapter, the internal model representation and the therefore utilized jBPT
library was explained. It was shown how the provided AbstractMultiGraph and
its data model is extended in order to meet the requirements of BPMN choreog-
raphy models. The chapter was concluded with an overview of how the different
components are implemented within the existing framework and by linking the im-
portant methods with the algorithms introduced within the chapter of conception.
In the next chapter, the implementation of the choreography generation process is
examined by analyzing the performance and the resulting models based on different
parameter settings.

3Java library for XML manipulation

47

