
4. Conception

The previous chapter covered the necessary background information on business
process collaborations represented in BPMN and their di↵erent perspectives. In
this chapter, the conception of the automatic process collaboration generator is
introduced.

4.1. Approach

As already mentioned in Chapter 3, a process collaboration involving several partners
can be modeled from di↵erent perspectives (partner or global) through the use of
di↵erent model types. The process collaboration generator, implemented in the
context of this work, generates all three di↵erent model types as the output. In
general, there exist two di↵erent approaches to build a process collaboration with
all the described models [9]. In the top-down approach, first the choreography model
is build, then the public and private models of each partner are derived and defined
consistently. In comparison, in the bottom-up approach, each partner has already
defined a private and public process. Then, the choreography model is constructed
by connecting the public models via message exchange.
The automatic generator, presented in this work, follows the top-down approach,

by first generating the choreography model and then deriving the collaboration,
public and private models from it. Thereby, each interaction (choreography task) of
the choreography model is converted into a send and receive task and then added
to the involved partners processes, to build their public process models. In turn,
each private model is derived from its corresponding public model by enriching the
public model with abstract private tasks. The collaboration model is then built by
composing the partner’s public processes into one model.

Figure 4.1.: Pyramid of Business Process
Model Correctness
(Source: [10])

Generally, when defining business
process models, three levels of correct-
ness need to be considered and satisfied
by the models:

Syntactical Correctness is defined by
the underlying BPMN meta model and
refers to the correct use and composition
of the corresponding model elements.
Syntactical constraints for example in-
clude the fact that any model must at

11

4. Conception

least have one start and one end event,
as well as that flow objects (e.g. tasks,
gateways, events) can only be connected
by control flow edges [10].

Behavioral Correctness constitutes that a process model must be executable and
therefore free of deadlocks or lifelocks. It assumes that the model is syntactically cor-
rect, because the behavior of a syntactical incorrect model is undefined. Regarding
collaborative, cross-organizational processes, it is also required that the composi-
tion of the involved public models is compatible. For example, this means, that for
every message that is send, a corresponding partner must be able to receive it [9,10].

Semantic Correctness means that the a process model must comply with imposed
compliance rules [10]. Thereby it must be di↵erentiated between local and global
compliance rules. Local compliance rules constrain the private process of a partner,
whereas global compliance rules constrain the interaction between multiple part-
ners [9]. In this work, only global compliance rules are considered to constrain the
choreography model.

Figure 4.2.: Top-Down Approach

All three correctness levels are considered by the proposed algorithm for imple-
menting an automatic process generator. The algorithm ensures that only model
specific flow objects are used to build the processes and that they are connected ap-
propriately (syntactical correctness). It also guarantees the absence of deadlocks and
lifelocks (behavioral correctness) and o↵ers the possibility to define global compli-
ance rules (see Chapter 4.2.2), to which the generated collaboration should comply
(semantic correctness). Deriving all models from the before generated choreography
model o↵ers also the advantage, that if the deriving process is implemented correctly,
it already ensures consistency and compatibility between the di↵erent models. In
the context of collaborative processes, consistency means, that the private model of
a partner has to be consistent with the corresponding public model, whereas com-
patibility requires the public models of the collaborating partners to be compatible
with one another [11]. This ensures that the executed business process of one part-

12

4. Conception

ner satisfies the behavior that is communicated to the partners through his public
models [9]. Figure 4.2 illustrates the the collaboration generation approach with it’s
di↵erent levels of correctness.

4.2. Constraining the Collaboration Generation

Despite the premise that the process collaborations should be generated randomly, it
is reasonable to set some boundaries within which the random generation takes place.
The implemented generator provides two di↵erent ways to influence the resulting
choreography model and hence the whole collaboration. The first one provides the
possibility to constrain the choreography model in terms of the employed flow objects
and their exact quantity by specifying several input parameters. The second one
enables the user to impose global compliance rules based on compliance patterns to
which the resulting model must comply.

4.2.1. Parametric Constraints

The following input parameters are specified to influence the random generation of
the choreography model and hence also the deriving models:

• Number of Partners:
Determines the number of participants that are involved in the process collab-
oration.

• Number of Interactions:
Determines the number of messages that are exchanged between the partners.

• Number of Exclusive Gateways:
Determines the number of Exclusive Gateways that are put into the model.

• Number of Parallel Gateways:
Determines the number of Parallel Gateways that are put into the model.

• Max. Branching:
Determines the maximum possible number of paths created for each gateway.

4.2.2. Compliance Constraints

Generally, compliance rules can be defined for di↵erent process flow perspectives
of a process. It can be distinguished between compliance rules that constrain the
control flow (sequence of activities), the data associated with the activities, the re-
sources (specific user or role) that perform the activities or the time perspective.
There exist several languages and approaches on how to define and specify com-
pliance rules, including formal languages [12], [13], visual languages [14], [15] and
pattern-based approaches [16], [17]. Both visual and pattern-based approaches aim

13

4. Conception

at hiding formal details (e.g. temporal logic) and therefore simplifying the specifi-
cation of compliance rules.

For the specification of compliance rules for the automatic process generator, the
pattern-based approach of Turetken et. al. [16] is utilized. In [16] a repository
of process control patterns is introduced, which are high-level templates used to
represent process properties which the process specification must satisfy. There are
four di↵erent groups of patterns:

• Order patterns concern the sequencing of activities. For Instance, ‘Customer Inquiry
LeadsTo O↵er ’, is used to express that after an inquiry is sent and received,
an o↵er must be sent at some point afterwards.

• Occurrence patterns represent rules that address the existence of certain ac-
tivities. For instance, ‘Check Credit Worthiness Universal’, is used to express
that the activity must always occur when the process is executed.

• Resource patterns constrain that certain activities must be performed by a spe-
cific user or group of users (role). For instance, ‘Approve O↵er PerformedBy
Role Q ’ constrains, that the activity must be assigned to a user who is part of
the user group Q.

• Time patterns are used to assign temporal rules to Order or Occurrence pat-
terns. For instance, ‘Customer Inquiry LeadsTo O↵er Within 7(days)’ con-
strains, that an O↵er has to be replied within seven days after an inquiry has
been received.

Because the generated process collaborations neglect the data, time and resource
perspective and focus solely on the control flow, only compliance rules that constrain
the sequence of activities are possible to impose. Following process control patterns
are supported to constrain the automatic generated choreography:

Pattern Description
P LeadsTo Q Interaction P must lead to Interaction Q
P Precedes Q Interaction Q must be preceded by Interaction P
P Universal Interaction P must always occur throughout execution
P Exists Interaction P must be specified in process

Table 4.1.: Overview of supported Compliance Patterns

Note that the P LeadsTo Q pattern does not demand an immediate succession of
interaction Q on interaction P.

4.3. Random Process Collaboration Generation

In this chapter, the needed components and their functionality for implementing
a random process generator are explained. Each component encapsulates a step

14

4. Conception

of the above described approach. Based on this approach, four components with
single responsibilities can be derived: one component is responsible for randomly
generating a choreography model, one for imposing compliance rules on the resulting
process, another for deriving the remaining model types and the last component
keeps control over the overall process. In the following the components and their
functionalities will be explained in details.

4.3.1. Overall Process Controller

The Overall Process Controller represents the orchestration component for building
random process collaborations, based on given constraints. The process follows the
principle ’first build then check’, which means that after a random choreography
model has been generated (see chapter 4.3.2), it will then be checked if the inter-
actions defined within the compliance rules, can be assigned into the already built
model in such a way that the resulting interaction sequence complies to the imposed
rules. If the interaction allocation is not possible without violating the compliance
rules, new random models will be build until a compliant model has been generated.
If the imposing of the compliance rules fails repeatedly, it’s an indicator that the
amount of interactions in the model is too small relative to the unique interactions
specified within the compliance rules. To overcome this, the number of interactions
is increased by 10 percent every 10th build. After a successful assignment of the
compliance rules, the remaining public and private models are derived out of the
generated choreography model. At last, all models will be translated into a valid
BMPN/XML. The whole process of generating a random choreography by coordi-
nating the di↵erent functions is outlined in Algorithm 1.

Algorithm 1: Overall Collaboration Generation Controller

1 buildSuccess = false;
2 while buildSuccess 6= true do
3 build new choreography model;
4 if compliance rules are defined then
5 assign interactions;
6 if assignment successful then
7 buildSuccess = true;
8 else if number of interaction mod 10 ⌘ 0 then
9 increase number of interactions by factor 1.1;

10 end

11 else
12 buildSuccess = true;
13 end

14 end
15 generate whole collaboration;
16 export models to BPMN;

15

4. Conception

4.3.2. Generating Random Choreography Models

The actual algorithm for generating graphs, representing choreography models, is
implemented within the Choreography Model Generator component. Throughout
the generation process, it is essential to keep track of the current model state at
every point, in order to know where it is possible to put a new node without vi-
olating the syntactical and behavioral correctness of the resulting BPMN model.
Therefore a Model Tracking component is necessary, which provides control flow
logic and a corresponding data model. The concept of this component is based on
the RPST graph decomposition which was introduced by Vanathalo et al. in [18].
In [18], a parsing algorithm for two-terminal graphs1 is introduced that results in a
unique graph decomposition represented as a hierarchical tree of modular and ob-
jective fragments. Modular means that a local change of the graph only impacts the
corresponding, decomposed fragment, whereas objective requires that a fragment
does not overlap with another fragment. Furthermore, fragments can be character-
ized as trivial and non-trivial. A fragment is trivial if it contains exactly one edge
and therefor, in the RPST, trivial fragments are represented by their edge and are
always leaf nodes in the RPST. In contrast, each non-trivial fragment is represented
as non-leaf node. The root fragment (non-trivial) of a RPST decomposition con-
tains all edges of a graph. Therefore it contains all other trivial and non-trivial
fragments and has the source and sink node as it’s boundaries. In the Model Track-
ing component of this work, the equivalent of a modular and objective fragment is
called a split. A split is created for each gateway fork that is put into the model.
Each split contains several branches (minimum two and maximum is defined by the
max branching parameter), that represent the di↵erent paths created by a parallel
or exclusive gateway. Again, each branch holds the set of nodes that are on the
path of a particular branch, whereas a path and therefore also a split, is limited by
the merge node of its corresponding fork gateway node. In terms of a choreography
model, nodes are limited to interactions and gateways.
Figure 4.3 illustrates the concept of this Model Tracking component. In this

example, there are in total three splits with the split nodes: start event (blue),
exclusive gateway#1 (red) and parallel gateway #1 (green). The split with the
start event as the split node and the end event as the merge node has always only
one branch, the root branch. Technically, this is not a split in the sense of the
terminology. But because of the underlying control flow logic and data model,
which is shown in figure 4.4, that defines that every branch must be related to a
split, this pseudo-split is necessary to keep track of the root branch.
The root branch (split #1 - branch #1) holds the set of ordered nodes: Interaction

#1, XOR gateway #1, XOR merge #1 and Interaction #10. Split #2 has three
branches. The first branch contains the nodes Interaction #2 and Interaction #5.
The second branch consists only of Interaction #3 and the third branch contains
AND gateway #1, AND merge #1 and Interaction #9. At last, the third split

1A directed graph that has a unique source node s and a unique sink node t 6= s with all other
nodes V are on a path from s to t.

16

4. Conception

Figure 4.3.: Model Tracking Component - Concept

Figure 4.4.: Model Tracking Component - Data Model

consists of two branches, which hold the remaining interactions #6, #8 and #7
respectively. Note that branches and therefore also splits, contain other splits, e.g.
split #2 contains split #3 in branch #3. This interleaving determines the hierarchy
of the resulting RPST, which is shown in Figure 4.5. The root fragment is split
#1 and contains the non-trivial fragment split #2 as well as the trivial fragments
(edges) E = {a, b, p, q}. In turn split #2 contains the non-trivial fragment split
#3 and the edges E = {c, d, e, f, g, h, n, o}. The last non-trivial fragment split #3
contains the edges E = {i, j, k, l, m}.
During the generation process, the current model build is maintained within the

Model Tracking component and simultaneously as a RPST graph. So far, there
is no apparent necessity for the Model Tracking component. But in order to auto-
matically generate graphs representing choreography models, additional control flow
logic is needed to ensure syntactically and behavioral correctness and to supervise
the compliance with the build parameters. Therefor, each branch needs a status.
This status indicates whether the branch is open, splitted or closed. Open defines,
that the branch is not yet enclosed by the merge node of its corresponding split node
and can further evolve by putting more nodes on its path. In turn, closed defines
that the branch is finalized and can not further evolve. Within the Model Tracking
component, a branch gets closed by putting the corresponding gateway merge node
to the parent’s branch and marking the branch as closed. Within the RPST graph,
the merge node and an edge between the branch’s last node with the merge node
is added. A branch can also be in splitted state, if it contains another split and
none of this split’s branches are yet closed, thus there exists no merge node for this

17

4. Conception

Figure 4.5.: Refined Process Structure Tree

split. In this case, a branch can not evolve until one of it’s child split’s branches is
in state closed and a merge node is placed on the branch. Then the state changes to
open again. For example, in figure 4.7, branch #1 of split #2 represents a branch
in state split, whereas the main branch is in state open because branch #2 of split
#1 is already closed by the merge node of split #2. When closing a branch, first it
is necessary to determine if a branch is allowed to be closed, without violating the
soundness of BPMN choreography models. This is dependent on the split node type
of the branch. The premise is that if the split node type is a parallel gateway, the
branch is determined as closable only if there is an interaction on all its enclosed
paths. This means, that if a branch has a child split, its not necessary that an
interaction is on the parent branch itself but on the branches of its child split or
even on a deeper nested branch.

Figure 4.6.: Minimum interactions reserved by remaining gateways

For instance, see the upper branch of the second parallel gateway in Figure 4.6.
The branch itself holds only another parallel gateway split node and a corresponding
merge node but no interaction. This is valid because both branches of the parallel

18

4. Conception

child split have an interaction and therefore also all enclosed paths of the parent
branch. If the split node type is a exclusive gateway, it’s allowed that one of the
split’s branches has no interaction on its path. For instance, see lowest branch
of fist exclusive gateway in Figure 4.6. This depicts the circumstance that for an
exclusive gateway, it’s required to be able to also model a branch, where under
certain process conditions no interaction between participants is necessary. This
approach of tracking the status of the branches becomes crucial when only few
remaining interactions are available and several branches are still open in the model.
Because of the parametric limitation of the number of interactions, at a certain point
in the build process or even directly in the beginning, if the proportion of specified
gateways and interactions is small, interactions are not always allowed to be selected
as next node type and not every open branch is allowed to be randomly selected
for putting the next node into the model without resulting in a violation of the
correctness of the model or exceeding the number of defined interactions. In order
to determine whether this situation applies to a current point in a build process, the
Model Tracking component monitors the amount of free interactions and reserved
interactions.
Reserved interactions, are a subset of the remaining interaction that have either

predetermined positions in the current graph (resInteractionsBranches) or will be
needed in further paths created by not yet employed gateways (resInteractionsGate-
ways). The exact amount of these reserved interactions depends on the number of
non-closable branches of the current graph and the number of gateways that are not
yet put into model. Regarding the current model, each open and non closable branch
increases the amount of resInteractionsBranches by one. Parallel gateways that are
not yet placed into the graph will later create at least two new branches, which then
again need at least one interaction on each of it’s paths. Considering that a gate-
way node is allowed to be immediately followed by another gateways node without
an interaction in between, the minimum amount of resInteractionsAndGateways is
remainingAndGateways + 1. This premise also influences the impact of remaining
exclusive gateways on the number of resInteractionsGateways. Each remaining ex-
clusive gateways only increases the number of resInteractionsGateways by 1 if there
is no more remaining parallel gateway. Because if there is also a remaining parallel
gateway, the exclusive gateway could be put on a branch of the parallel gateway
directly after the split and therefor the one needed interaction of the exclusive gate-
way is already considered in the calculation of resInteractionsAndGateways. The
influence of nested gateways onto the minimum amount of reserved interactions is
illustrated in Figure 4.6. Given the parametric constraints numberOfInteractions =
3, numberOfParallelGateways = 2 and numberOfExclusiveGateways = 1, the figure
represents one out of three possible resulting choreography models, which only di↵er
in the sequence of used gateway types but not in the way of nesting and branching.
After the amount of reserved interactions is calculated, the number of free interac-
tions is determined by the di↵erence between the amount of remaining interactions
and the number of reserved interactions. Based on the values of the specified vari-
ables defined in Definition 4.3.1, the node type of the next node to be put in the

19

4. Conception

model and the corresponding position can be randomly selected without resulting
in an incorrect model. For example, if the amount of free interactions is < 1, the
random branch selection (position in the model) for putting the next node is limited
to the branches that are not yet closable. On the other hand, if the amount of free
interactions > 0, then all open branches can be selected for putting the next node.
For the limitation of random branch selection, see also Algorithm 3 and Figure 4.7,
which shows an unfinished choreography model at the point during the build process,
assuming the parametric constrains numberOfInteractions = 6, numberOfAndGate-
ways = 1 and numberOfExclusiveGateways = 1, where not all open branches are
allowed to be selected for placing the node (in this case an interaction). In order
to obtain a sound choreography model while not increasing the number of initially
specified interactions, the sixth interaction is only allowed to be placed on branch
#2 of split #3. In this scenario, reservedInteractionsTotal equals one and freeIn-
teractions therefor equals zero. On the other hand, if assuming the total number
of interactions being 7, all branches of split #3 and the root branch are possible
candidates for placing the sixth interaction, because at this point, freeInteractions
would equal one. In case of selecting the next possible node type, interactions are
only allowed to be randomly selected, if the the amount of free interactions > 0 or
not all remaining interactions are reserved by not yet consumed gateways.

Definition 4.3.1 Let x be the number of branches which are open and non-closable,
remainingInteractions, all interactions not yet put into the model and
remainingXOR and remainingAND the number of gateways not yet put into the
model. Then

resInteractionsBranches = x
resInteractionsAndGateways = remainingAND + 1

resInteractionsXORGateways = If remainingAND > 0 Then 0 Else 1
resInteractionsGateways = resInteractionsAndGateways +

resInteractionsXORGateways
resInteractionsTotal = resInteractionsBranches + resInteractionsGateways

freeInteractions = remainingInteractions - resInteractionsTotal

The overall procedure of generating random choreography models is shown in Al-
gorithm 6. The input for a random model generation are the parametric constraints
introduced in section 4.2.1. At first, it is checked if the specified combination of the
amount of interactions and gateways are su�cient for generating a sound model.
This is the same evaluation as in determining the reserved interactions by remain-
ing gateways. Therefore, the specified numberOfInteractions must be greater or
equal resInteractionsGateways. If the validation is successful, the Model Tracking
component gets instantiated. Thereby, a split for the start event and the root branch
is created. After this setup, the algorithm loops over the number of remaining in-
teractions until all interactions are put into the model. Within each loop, at first a
node type for the next node is randomly selected out of the pool of remaining nodes.

20

4. Conception

Figure 4.7.: Limitation of random branch selection

This can be an interaction, exclusive or parallel gateway, depending on the number
of free and reserved interactions as already explained. The algorithm for random
possible node type selection is shown in Algorithm 2.

Algorithm 2: getRandomNodeType()

1 begin
2 possibleNodeTypes {}
3 if freeInteractions > 0 _ remainingInteractions ¿ resInteractionsGateways then
4 possibleNodeTypes possibleNodeTypes [Interaction
5 end
6 if remainingParallelGateways > 0 then
7 possibleNodeTypes possibleNodeTypes [ParallelGateways
8 end
9 if remainingExclusiveGateways > 0 then

10 possibleNodeTypes possibleNodeTypes [ExclusiveGateways
11 end
12 return random NodeType of possibleNodeTypes
13 end

After a node type has been randomly selected, a position in the model is deter-
mined for placing a node of the previously selected node type by randomly selecting
a possible open branch. Which branches are in the pool of possible, selectable
branches, is again depending on whether there are free interactions available or not.
If there are free interactions left, all open branches are allowed to be selected, in-
dependent of the priorly selected node type. Otherwise, only branches that are not
closable are allowed to be included in the pool of possible branches. The algorithm
for random possible branch selection is shown in Algorithm 3.

21

4. Conception

Algorithm 3: getRandomBranch()

1 begin
2 possibleBranches {}
3 if freeInteractions > 0 then
4 possibleBranches all open branches
5 else
6 possibleBranches all not closable branches
7 end
8 return random Branch of possibleBranches
9 end

In the next step, the randomly selected branch is checked whether it’s closable
or not and if so gets closed by random. This doesn’t apply to the root branch
to make sure that there is always one branch where the model can further evolve.
This step of random branch closing is necessary to obtain balanced choreography
models regarding nested branches. If there would be no random branch closing
mechanism, the resulting models would be very similar. A mechanism that closes
branches whenever they are possible to close would only result in models with lesser
nested branches whereas a mechanism that never closes branches would result in
models that have highly nested branching. If the selected branch gets randomly
closed, a merge node for the selected branch’s split is created and added to the par-
ent branch. Additionally, in the data model of the corresponding split, the merge
node gets noted in order to assure that the last nodes of the other branches of this
split will get connected with the same merge node as soon as they get closed. Fi-
nally, the algorithm jumps back to the beginning of the loop and starts again with
randomly selecting a possible node type for the next node to be placed in the model.

Algorithm 4: getRandomBranchAmount()
Input :

– minBranching 2

– maxBranching user specified upper branch amount border

– freeInteractions number of currently free interactions

1 begin
2 if freeInteractions � 0 then
3 currentMaxBranching minBranching + freeInteractions
4 if currentMaxBranching > maxBranching then
5 currentMaxBranching maxBranching
6 end

7 else
8 currentMaxBranching minBranching
9 end

10 return random value between minBranching and currentMaxBranching

11 end

22

4. Conception

By the time a branch is not randomly closed, a node of the predefined node
type gets instantiated. In case of an interaction, only the plain object without any
sender, receiver or message gets instantiated. Is the selected node type a gateway,
the number of branches is determined by randomly selecting a number between 2
and the current maximum branching amount. The maximum branching amount is
generally limited by the user specified max branching parameter. But again, due to
the limitation of interactions, the specified maximum amount of branches can not
be adducted as the upper border without considering the current amount of free
interactions. If only the user specified upper branching border (max. branching pa-
rameter) is adducted, there is a high chance that this would result in an inconsistent
model, because the remaining interactions are insu�cient for all paths created. In
order to prevent this, the possible upper limit is determined dynamically each time
a gateway node is put into the model by taking the minimum branching amount,
which is always two, and adding the amount of free interactions. The algorithm for
random possible branch amount selection is shown in Algorithm 4. After a random
number of branches is determined, the gateway node is added to the assigned branch
and the corresponding split and branches are instantiated within Model Tracking.
Finally, the amount of the selected node type is decreased by one and the newly
created edge between the preceding and the new node gets added into the RPST
graph, before the loop starts over by selecting a random node type for the next node
to be put into the model.

23

4. Conception

Algorithm 5: closeSplit(Split)
Input :

– mainSplit split of root branch

1 begin
2 foreach branch of split.branches do
3 foreach node of branch.nodes do
4 if node is gateway then
5 closeSplit(split)
6 end

7 end
8 if branch is open then
9 branch.close()

10 end

11 end

12 end
13 Function branch.close()
14 split split of branch
15 if split.mergeNode == null then
16 mergeNode instantiate merge node of gateway type
17 split.mergeNode mergeNode
18 branch.state closed
19 else
20 branch.state closed
21 end

After all interactions and gateways are put into the model, the loop ends and all
still open branches are getting closed. Algorithm 5 displays the function to close all
yet open branches by looping the model recursively. At this point, where the model
doesn’t further evolve, a branch is closed if the belonging split has a merge node
assigned. If this is not the case, a merge node is created, added to the corresponding
branch and assigned to the split.

At this point the generated model is already syntactically correct because all model
elements are used and connected according to BPMN specification. To achieve also
behavioral correctness in choreography models, beside a correct sequence flow, a
message flow must be incorporated. Therefore, a sender and receiver must be as-
signed to each interaction in order to form a valid sender-receiver sequence. Thereby,
the sender of a succeeding interaction Q must always be either the sender or receiver
of the directly preceding interaction P on the path. If this rule is not considered
and the sender of a directly succeeding interaction Q is neither the sending nor the
receiving participant of the directly preceding interaction P, a flawless execution of
the process is not possible, because the sender of interaction Q will never know if
the directly preceding interaction P has been performed yet. In case of gateways,
additionally it is ensured that the receiver of the last interaction of each branch of

24

4. Conception

Algorithm 6: Generate Choreography Model

1 hbt Input :

– remainingNodes number of nodes by type

– participants number of participants

– loops number of loops

– graph RPST graph

2 begin
3 if number of interactions number of gateways + 1 then
4 model generation not possible
5 end
6 modelTracking initialize model tracking component
7 while remainingInteractions > 0 do
8 nextNodeType getRandomNodeType()
9 selectedBranch getRandomBranch()

10 precedingNode last node of selectedBranch
11 if precedingNode is NULL then
12 precedingNode split node of selectedBranch
13 end
14 if selectedBranch is closable then
15 close branch by random
16 if closed then
17 continue
18 end

19 else
20 nextNode instantiate node of nextNodeType
21 if nextNodeType is Gateway then
22 branchCount getRandomBranchCount()
23 split instantiate new split
24 modelTracking.splits split
25 for i 0 branchCount do
26 branch instantiate new branch
27 split.branches branch
28 i i + 1
29 end

30 end
31 selectedBranch.nodes selectedBranch.nodes [nextNode
32 decrease remainingNodes of nextNodeType
33 add edge between precedingNode and nextNode to graph

34 end

35 end
36 close still open splits
37 add end event to root branch
38 enrich interactions with reasonable sender and receiver sequence
39 end

25

4. Conception

the gateway is the same in order to determine a possible common sender for the
succeeding interaction after the merge. Figure 4.8 illustrates a correct message flow
within choreography models.

Figure 4.8.: Message Flow - Sender/Receiver sequence

Note that because of the fact that the sequence flow is first build without consid-
ering the corresponding message flow, it is likely that at some points an additional
interaction must be inserted into the model to satisfy the above stated rules of
sender-receiver sequences.

4.3.3. Compliance Rules Assignment

As pointed out in Chapter 4.3.1, first a model is generated and afterwards it is
checked whether the interaction sequence specified within the compliance rules can
be applied to the generated model. Instead of considering the imposed compliance
rule during the choreography generating, the followed approach was favored to al-
low users to specify compliance rules, which then can be imposed to also already
existing choreography models in order to check if this particular model complies to
the specified rules. Until now, the generated model complies only to the parametric
constraints. The logic of specifying and imposing compliance rules is implemented
within the Compliance Controller component.

When specifying compliance rules to which the choreography model must comply,
it must be checked whether the imposed rules are consistent with one another. In
the context of the four supported patterns (see Table 4.1), this applies only to the
two order patterns (LeadsTo and Precedes). For instance, consider the following set
of compliance rules:

• CR-1 : P LeadsTo Q

• CR-2 : Q LeadsTo S

• CR-3 : S Precedes P

In this example, the rule CR-1 in combination with CR-2 is in conflict with CR-3,
because CR-1 and CR-2 determine, that the involved activities must occur in the

26

4. Conception

order P-Q-S, whereas CR-3 constrains, that activity S must occur before activity P,
which is in violation of the order determined by CR-1 and CR-2. Algorithm 7 shows
the conflict checking procedure implemented within the Compliance Controller.

Algorithm 7: Adding Compliance Rules
Input :

– compliance rule cr

– dictionary orderDependencies consisting of Interactions P and their succeeding
Interactions S

1 begin
2 if cr is order pattern then
3 p preceding interaction of cr
4 s succeeding interaction of cr
5 if !orderConflictCheck(p, s) then
6 add cr to complianceRules
7 if p 2 P of orderDependencies then
8 add s to succeeding interactions S of p
9 else

10 add p to orderDependencies
11 add s to succeeding interactions S of p
12 end

13 else
14 add cr to conflictedRules
15 end

16 end

17 end
18 Function orderConflictCheck(p, s)
19 if s 2 P of orderDependencies then
20 foreach s 2 S of p do
21 if s == p then
22 return true
23 else if orderConflictCheck(s, p) then
24 return true

25 end

26 else
27 return false
28 end

The result of this procedure is a set of conflict free compliance rules, which de-
termines a specific order sequence between the involved interactions. The specific
interactions of the compliance rules are then eventually assigned to the existing
interactions within the before generated model in a way that it complies to the in-
teraction order and the compliance rules. Therefore, the first step is to determine
all possible positions within the model for each compliance rule. The result is a
set of possible position combinations (interactions placed in the model during initial

27

4. Conception

choreography generation) for the compliance rule specified Interaction P and Inter-
action Q. For each possible position of Interaction P there has to be at least one
possible position for Interaction Q. The rules that determine applicable positions for
the four implemented compliance patterns are shown in Definitions 4.3.2 - 4.3.5.

The di↵erence between the determination of possible positions for the patterns
LeadsTo and Precedes is that in case of P LeadsTo Q the position for Interaction
Q must always be reached after the position of Interaction P has been reached,
whereas in case of P Precedes Q the Interaction Q must only be possible to reach
afterwards. In other words, if Interaction Q is executed, Interaction P must have
occurred before. This means that unlike for the LeadsTo pattern, in case of a
Precedes the succeeding interaction Q can also be inside an exclusive branch of the
subsequent path of interaction P. For example, let P be assigned to Interaction IA
2 of the choreography model shown in figure 4.9. In case of a Precedes pattern,
the set of possible interactions for Q is Q IA2 = {IA 3, IA 4, IA 5, IA 6, IA 7,
IA 8, IA 9, IA 10, IA 11, IA 12, IA 13, IA 14}. These are all interactions that
are possibly reachable after IA 2 has been reached. On the other hand, in case
of LeadsTo, the set of possible interaction assignments Q IA2 only includes {IA 13,
IA 14}, because if IA 2 has been reached, only these two are always possible to
be reached afterwards. Additionally to this rules, for a given P assigned within
a parallel branch, the succeeding interaction Q is not allowed to be assigned to
a position of another parallel branch, because there is no control mechanism that
ensures the correct sequence of parallel interactions. This must be considered for
both order patterns.

Definition 4.3.2 Possible position assignments for the interactions P and Q of a
compliance pattern P LeadsTo Q are as following:

Interaction P = An interaction that has interactions on its subsequent paths that
will always be reached.

Interaction Q = An interaction that will always be reached after Interaction P
has been reached.

Definition 4.3.3 Possible position assignments for the interactions P and Q of a
compliance pattern P Precedes Q are as following:

Interaction P = An interaction that is always reached prior to Interaction Q.
Interaction Q = An interaction that has interactions on its preceding path that

were always reached prior to Interaction Q.

The two occurrence patterns Universal and Exists di↵er only in that in for P
Universal, the position of interaction P must always be reached throughout process
execution, whereas for P Exists the position of interaction must only be reachable
or in other words must be defined within the model.

28

4. Conception

Definition 4.3.4 Possible position assignments for the interaction P of a compli-
ance pattern P Universal are as following:

Interaction P = An interaction that will always be reached.

Definition 4.3.5 Possible position assignments for the interaction P of a compli-
ance pattern P Exists are as following:

Interaction P = An interaction that can be reached.

Figure 4.9.: Compliance Rule Assignment

If the interactions used for specifying the rules are disjoint between all the compli-
ance rules, the sets of assignment combinations are already su�cient to assign the
involved interactions to positions that result in a model that is compliant with the
opposed rules. But if there are particular interactions that are used in more than
one compliance rule specification, the intersection of the interaction’s possible as-
signments of all involved compliance rules represents the set of possible assignments
for this particular interaction. For example, consider the choreography model shown
in Figure 4.9 and the following compliance rules within which interaction B and C
are each specified in the compliance rules CR-1 and CR-2 :

• CR-1 : Interaction A LeadsTo Interaction B

• CR-2 : Interaction C Precedes Interaction B

• CR-3 : Universal Interaction C

The three compliance rules form two valid order sequences between the three spec-
ified interactions: Interaction A! Interaction C! Interaction B and Interaction C
! Interaction A ! Interaction B. More than one valid order indicates that there is
no strict sequence between some defined interactions. For example, within the three
stated compliance rules there is no determined sequence between Interaction A and
Interaction C. Thus, that in this case, the two interactions can be also assigned to
paths that are parallel to one another. If there is more than one possible order, the
implemented procedure choses one by random.

29

4. Conception

Algorithm 8: Compliance Rules Assignment

Input : interactionOrder ordered CR interactions
1 begin
2 determinePossibleAssignments()
3 foreach interaction in interactionOrder do
4 if !assignInteraction(interaction) then
5 return false
6 end

7 end

8 end
9 Function assignInteraction(Interaction ia)

10 affectedCRs all compliance rules with ia involved
11 crPossibleAssignments HashMap<cr, model interactions>
12 modelAssignments HashMap<cr interaction, model interaction>
13 foreach cr in a↵ectedCRs do
14 if ia is specified P of cr then
15 crPossibleAssignments add all possible model interactions for P
16 else if ia is specified Q of cr then
17 pAssignment already assigned model interaction of P

crPossibleAssignments add all possible model interactions of Q for
the given P

18 end
19 commonPossibleAssignments common model interactions between all

crPossibleAssignment entires
20 if commonPossibleAssignments is not empty then
21 selectedInteraction get interaction with most succeeding interactions

out of commonPossibleAssignments
22 modelAssignments add ia with selected model interaction
23 return true

24 else
25 return false
26 end

After the interaction order is set, for every specified compliance rule the possible
model positions are determined independently, based on the rules defined in Defi-
nitions 4.3.2 to 4.3.5. The result of this step is shown in Tables 4.2 to 4.4. These
two steps are the preconditions for the actual assignment of the interactions into the
existing model, which is shown in Algorithm 8. The assignment procedure iterates
over the interaction order and for each interaction the intersection of the possible
assignments of all a↵ected compliance rules (commonPossibleAssignments) is calcu-
lated. Is the current interaction specified as the succeeding interaction of an a↵ected
order compliance rule, the possible model positions of this rule are limited to the
succeeding model positions of the corresponding, already assigned, preceding inter-
action. For instance, let the order of the example compliance rules be C ! A ! B
and let Interaction C be already assigned to IA 1 and Interaction A to IA 3 of the

30

4. Conception

model shown in Figure 4.9. In order to determine the possible model positions for
Interaction B, the intersection of the sets of possible positions for Interaction B of
the a↵ected rules CR-1 and CR-2 has to be determined:

• CR-1 : {IA5, IA8, IA9}

• CR-2 : {IA2, IA3, IA4, IA5, IA6, IA7, IA8, IA9}

• CR-1 \ CR-2 : {IA5, IA8, IA9}

Is the resulting intersection of the sets of possible assignments empty, then there
is no valid position in the model where the interaction could be assigned to. In this
case, the whole assignment process fails and results in a failed choreography build
process, which triggers a new build process from the beginning (see Algorithm 1
- line 6). Is the intersection of possible model positions not empty, the procedure
choses the interaction that has the most interactions on it’s succeeding path, or in
terms of RPST, the highest ranked trivial fragment on the hierarchy. This ensures,
that the assignment process does not fail because of higher ranked interactions being
assigned to positions at the end of the model, so that there are no valid positions
left for lower ranked ones.

Interaction A Interaction B
IA1 {IA8, IA9}
IA2 {IA3, IA4, IA5, IA8, IA9}
IA3 {IA5, IA8, IA9}
IA4 {IA5, IA8, IA9}
IA5 {IA8, IA9}
IA6 {IA7, IA8, IA9}
IA7 {IA8, IA9}
IA8 {IA9}
IA9 {}

Table 4.2.: Possible assignment combinations for CR-1

Interaction C Interaction B
IA1 {IA2, IA3, IA4, IA5, IA6, IA7, IA8, IA9}
IA2 {IA3, IA4, IA5}
IA3 {IA5}
IA4 {IA5}
IA5 {}
IA6 {IA7}
IA7 {}
IA8 {IA9}
IA9 {}
Table 4.3.: Possible assignment combinations for CR-2

31

4. Conception

Interaction C
IA1
IA8
IA9

Table 4.4.: Possible assignments for CR-3

4.3.4. Deriving the Collaboration Models

Following the introduced top-down approach, the collaboration model as well as the
public and private models of each partner are derived from the generated chore-
ography model. As already mentioned, the public models are projections of the
choreography model, which means that they represent the view on the collaboration
process from the perspective of each involved participant, while focusing on the pro-
cess of one participant at a time. They only include activities that are necessary to
communicate with other process participants. The private models are then enhanced
versions of the public models. Additionally, they include internal process activities
that don’t involve interaction with other participants and that are not relevant for
other participants to know. At last, the collaboration model is the interconnection
between the public models of each participant. Together they form a holistic view
on the whole collaboration process and is therefore a di↵erent representation of the
choreography model, without any information loss.
In the process of deriving the models, each interaction of the choreography model
results in a send and receive task in the corresponding public models of the involved
partners. In the public model of the initiating participant of an interaction, a send
task is inserted and in the model of the receiving participant a corresponding receive
task. Additionally, for each public model, it is tried to reduce the model’s sequence
flow as much as possible without violating the underlying, predetermined sequence
flow of the choreography model. Thereby, each gateway of the choreography model
is checked for interactions within its subsequent paths involving the current partic-
ipant. If there are none, the gateway and it’s subsequent paths are not put into the
public model of this participant.

32

4. Conception

Figure 4.10.: Choreography Model

For instance, the choreography model shown in figure 4.10 would result in the
three public models shown in Figures 4.11 to 4.13. The public model of Participant
A (figure 4.11) is the only model where the sequence flow can be reduced in compar-
ison to the choreography model. Because the lower path of the exclusive gateway
XOR #1 does not involve interactions that a↵ect participant A, the whole path with
all it’s subsequent paths are not necessary and therefor not put into the public model.

Figure 4.11.: Public Model - Participant A

Figure 4.12.: Public Model - Participant B

33

4. Conception

Figure 4.13.: Public Model - Participant C

In order to derive the private models from the public models, the public models
are randomly enriched with private tasks, as well as some additional sequence flow
elements (gateways) without violating the predefined sequence flow. The public
models could also be used as private models without the enrichment, but because
in real process scenarios, it is not likely that a participant does only perform public,
interacting tasks, this enrichment is implemented. Figure 4.14 shows a possible
outcome of a private model for participant A.

Figure 4.14.: Possible Private Model - Participant A

4.4. Model Translation to BPMN/XML

BPMN is the standard for describing business processes of any kind and therefore
it is necessary to translate the generated process collaboration models in order to
make them shareable and usable by a broad audience. Also, if some conventions are
respected, the translated private models are out of the box executable and there-
fore the process can be tested by typical process engines. In order to translate the
RPST representation of the models to BPMN/XML, the internal model elements
for events, tasks, gateways, edges and participants must be mapped to the corre-
sponding BPMN elements (see Table 5.1) of the di↵erent model types and a process
for generating a valid BPMN file must be designed. It has to be mentioned that the
resulting BPMN/XML files only contain the formal process description. A genera-
tion of a the graphical process description will not take place. The following Table
4.5 shows the mapping of model type independent objects. These objects are used

34

4. Conception

in all di↵erent model types and are therefore also common in the di↵erent BPMN
models. Each model object is referenced by or has a reference to one or more other
objects. For instance, the edges between flow objects do always refer to the flow
objects (tasks and gateways) that are connected through this edge or, in case of
an interaction, the message being sent is referenced. For this purpose, each model
object has a unique id that also must be generated during the translation process.

Internal Object BPMN/XML Element

Participant <participant id=”(unique�id) ” name=”(name) ”/>

Start Event
<startEvent id=”(unique�id) ” name=””>

<outgoing>r e f�to�sequenceFlow</outgoing>
</startEvent>

End Event
<endEvent id=”(unique�id) ” name=””>

<incoming>r e f�to�sequenceFlow</incoming>
</startEvent>

Parallel Gateway

<parallelGateway id=”(unique�id) ” name=””
gatewayDirection=”Diverg ing ”>

<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>
<outgoing>r e f�to�sequenceFlow</outgoing>

</parallelGateway>

<parallelGateway id=”(unique�id) ” name=””
gatewayDirection=”Converging”>

<incoming>r e f�to�sequenceFlow</incoming>
<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>

</parallelGateway>

Exclusive Gateway

<exclusiveGateway id=”(unique�id) ” name=””
gatewayDirection=”Diverg ing ”>

<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>
<outgoing>r e f�to�sequenceFlow</outgoing>

</exclusiveGateway>

<exclusiveGateway id=”(unique�id) ” name=””
gatewayDirection=”Converging”>

<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>
<outgoing>r e f�to�sequenceFlow</outgoing>

</exclusiveGateway>

Edge
<sequenceFlow id=”(unique�id) ” name=””

sourceRef=”(re f�to�f low�ob j e c t) ”
targetRef=”(re f�to�f low�ob j e c t) ”/>

Message
<message id=”(unique�id) ” name=””/>

<messageFlow id=”(unique�id) ” messageRef=”(re f�to�message) ”
sourceRef=”(re f�to�sendTask/ pa r t i c i p an t) ”
targetRef=”(re f�to�rece iveTask / pa r t i c i p an t) ”/>

Table 4.5.: Mapping Common Model Elements to BPMN/XML

In the following, for each model type, the mapping of the internal model elements
to the corresponding BPMN elements is explained. Because collaboration, public
and private model share the same BPMN structure, they are consolidated in one
chapter.

4.4.1. Choreography Model

The flow object interaction is the only unique object in choreography models. It
references the connecting edges (sequenceFlows), the messageFlow and the two par-
ticipants, that are interacting. Table 4.6 shows the structure of the corresponding

35

4. Conception

BPMN/XML object.

Internal Object BPMN/XML Element

Interaction

<choreographyTask id=”” name=”” initiatingParticipantRef=””>
<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>
<participantRef>r e f�to�pa r t i c i p an t</participantRef>
<participantRef>r e f�to�pa r t i c i p an t</participantRef>
<messageFlowRef>r e f�to�messageFlow</messageFlowRef>

</choreographyTask>

Table 4.6.: Mapping Choreography Model to BPMN/XML

Figure 4.15.: BPMN/XML Translation Example - Choreography Model

The BPMN/XML shown in Example 4.1 represents the valid translation of the
example choreography model shown in Figure 4.15. Independent from the model
type, every BPMN/XML has the root element definitions with the namespace and
schema declarations. The actual model objects are located inside the choreogra-
phy element as already explained above. Because all di↵erent model types share
a common xml structure convention and other models, e.g. collaboration models,
can have more than one process described inside one BPMN/XML, data objects
(e.g. messages) are located outside the actual process definitions, to be referenced
by every including process.

<?xml version=” 1.0 ” encoding=”UTF�8”?>
<definit ions xmlns=” ht tp : //www. omg . org / spec /BPMN/20100524/MODEL” xmlns :x s i=” ht tp : //www.w3 .

org /2001/XMLSchema�i n s t ance ” typeLanguage=” ht tp : //www.w3 . org /2001/XMLSchema”
xsi:schemaLocation=” ht tp : //www. omg . org / spec /BPMN/20100524/MODEL ht tp : //www. omg . org /
spec /BPMN/2.0/20100501/BPMN20. xsd”>

<message id=”m111” name=”message IA #1”/>
<message id=”m112” name=”message IA #2”/>
<message id=”m113” name=”message IA #3”/>
<message id=”m113” name=”message IA #4”/>
<choreography id=”c111”>

<participant id=”p111” name=”Par t i c i pant A”/>
<participant id=”p112” name=”Par t i c i pant B”/>
<participant id=”p113” name=”Par t i c i pant C”/>
<messageFlow id=”mf111” messageRef=”m111” sourceRef=”p111” targetRef=”p112”/>
<messageFlow id=”mf112” messageRef=”m112” sourceRef=”p112” targetRef=”p111”/>
<messageFlow id=”mf113” messageRef=”m113” sourceRef=”p112” targetRef=”p111”/>
<messageFlow id=”mf114” messageRef=”m113” sourceRef=”p112” targetRef=”p111”/>
<choreographyTask id=”ct111 ” name=” In t e r a c t i o n #1” initiatingParticipantRef=”p111”>

36

4. Conception

<incoming>s f 111</incoming>
<outgoing>s f 112</outgoing>
<participantRef>p111</participantRef>
<participantRef>p112</participantRef>
<messageFlowRef>mf111</messageFlowRef>

</choreographyTask>
<choreographyTask id=”ct112 ” name=” In t e r a c t i o n #2” initiatingParticipantRef=”p112”>

<incoming>s f 113</incoming>
<outgoing>s f 115</outgoing>
<participantRef>p112</participantRef>
<participantRef>p111</participantRef>
<messageFlowRef>mf112</messageFlowRef>

</choreographyTask>
<choreographyTask id=”ct113 ” name=” In t e r a c t i o n #3” initiatingParticipantRef=”p112”>

<incoming>s f 114</incoming>
<outgoing>s f 115</outgoing>
<participantRef>p112</participantRef>
<participantRef>p111</participantRef>
<messageFlowRef>mf113</messageFlowRef>

</choreographyTask>
<choreographyTask id=”ct114 ” name=” In t e r a c t i o n #4” initiatingParticipantRef=”p111”>

<incoming>s f 117</incoming>
<outgoing>s f 118</outgoing>
<participantRef>p111</participantRef>
<participantRef>p113</participantRef>
<messageFlowRef>mf114</messageFlowRef>

</choreographyTask>
<startEvent id=”e111” name=” s t a r t ”>

<outgoing>s f 111</outgoing>
</startEvent>
<endEvent id=”e112” name=”end”>

<incoming>s f 117</incoming>
</endEvent>
<parallelGateway id=”g111” name=”AND1” gatewayDirection=”Diverg ing ”>

<incoming>s f 112</incoming>
<outgoing>s f 113</outgoing>
<outgoing>s f 114</outgoing>

</parallelGateway>
<parallelGateway id=”g112” name=”AND1 merge” gatewayDirection=”Converging”>

<incoming>s f 115</incoming>
<incoming>s f 116</incoming>
<outgoing>s f 117</outgoing>

</parallelGateway>
<sequenceFlow id=” s f111 ” name=”” sourceRef=”e111” targetRef=”ct111 ”/>
<sequenceFlow id=” s f112 ” name=”” sourceRef=”ct111 ” targetRef=”g111”/>
<sequenceFlow id=” s f113 ” name=”” sourceRef=”g111” targetRef=”ct112 ”/>
<sequenceFlow id=” s f114 ” name=”” sourceRef=”g111” targetRef=”ct113 ”/>
<sequenceFlow id=” s f115 ” name=”” sourceRef=”ct112 ” targetRef=”g112”/>
<sequenceFlow id=” s f116 ” name=”” sourceRef=”ct113 ” targetRef=”g112”/>
<sequenceFlow id=” s f117 ” name=”” sourceRef=”g112” targetRef=”ct114 ”/>
<sequenceFlow id=” s f118 ” name=”” sourceRef=”ct114 ” targetRef=”e112”/>

</choreography>
</definit ions>

Example 4.1: BPMN Choreography Model Example

4.4.2. Collaboration / Public / Private Models

As mentioned in Chapter 3, in a collaborative scenario, the collaboration, public
and private models share the same BPMN/XML structure, because in each of the
model types, there is at least one interactive task (send / receive messages) and a
corresponding message flow (sender, receiver and message) that must be described
within the BPMN/XML. Each partner can also decide if they want to share the
private tasks within the public model and therefore also in the collaboration model,
that is essentially a combined view of all partners public models. Because of this,
the three model types can comprise all the BPMN objects shown in Table 4.7.

37

4. Conception

Internal Object BPMN/XML Element

Send Task
<sendTask id=”(unique�id) ” name=”(name) ”>

<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>

</sendTask>

Receive Task
<receiveTask id=”(unique�id) ” name=”(name) ”>

<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>

</receiveTask>

Private Task
<task id=”(unique�id) ” name=”(name) ”>

<incoming>r e f�to�sequenceFlow</incoming>
<outgoing>r e f�to�sequenceFlow</outgoing>

</task>

Table 4.7.: Mapping Collaboration Model to BPMN/XML

Figure 4.16.: BPMN/XML Translation Example - Collaboration Model

The BPMN/XML shown in Example 4.2 represents the valid translation of the
collaboration model shown in Figure 4.16. Following the BPMN/XML convention,
the root element is included as well the definitions with the namespace and schema
declarations. A layer below, the process independent data objects message, the
collaboration specific objects and a process for each participant are defined. Within
the collaboration element, the participants, with a reference to their corresponding
process and the message flow of the involving interacting tasks are declared. The

38

4. Conception

messageFlow object references the send and receive tasks that exchange the message.
Or, if a process of a participant is represented as a black box, themessageFlow object
can also reference the process itself. In case of public or private models, where
it is also possible that only one process of a specific participant is included, the
messageFlow object references the participant that sends or receives the message.

<?xml version=” 1.0 ” encoding=”UTF�8”?>
<definit ions xmlns=” ht tp : //www. omg . org / spec /BPMN/20100524/MODEL” xmlns :x s i=” ht tp : //www.w3 .

org /2001/XMLSchema�i n s t ance ” typeLanguage=” ht tp : //www.w3 . org /2001/XMLSchema”
xsi:schemaLocation=” ht tp : //www. omg . org / spec /BPMN/20100524/MODEL ht tp : //www. omg . org /
spec /BPMN/2.0/20100501/BPMN20. xsd”>

<message id=”m1” name=”message IA #1”/>
<message id=”m2” name=”message IA #2”/>
<message id=”m3” name=”message IA #3”/>
<message id=”m4” name=”message IA #4”/>
<c o l l a b o r a t i o n id=” co l l ab1 ”>

<participant id=”p1” name=”Par t i c i pant A” proces sRe f=”pr1”/>
<participant id=”p2” name=”Par t i c i pant B” proces sRe f=”pr2”/>
<participant id=”p3” name=”Par t i c i pant C” proces sRe f=”pr3”/>
<messageFlow id=”mf1” messageRef=”m1” name=”” sourceRef=”t1 ” targetRef=”t5 ”/>
<messageFlow id=”mf2” messageRef=”m2” name=”” sourceRef=”t8 ” targetRef=”t2 ”/>
<messageFlow id=”mf3” messageRef=”m3” name=”” sourceRef=”t9 ” targetRef=”t3 ”/>
<messageFlow id=”mf4” messageRef=”m4” name=”” sourceRef=”t4 ” targetRef=”pr3”/>

</ c o l l a b o r a t i o n>
<proce s s id=”pr1” name=”Par t i c i pant A”>

<sendTask id=”t1 ” name=”Send IA #1”>
<incoming>s f 1</incoming>
<outgoing>s f 2</outgoing>

</sendTask>
<startEvent id=”e1” name=” s t a r t ”>

<outgoing>s f 1</outgoing>
</startEvent>
<parallelGateway gatewayDirection=”Diverg ing ” id=”g1” name=”AND1”>

<incoming>s f 2</incoming>
<outgoing>s f 3</outgoing>
<outgoing>s f 4</outgoing>

</parallelGateway>
<receiveTask id=”t2 ” name=”Receive IA #2”>

<incoming>s f 3</incoming>
<outgoing>s f 5</outgoing>

</receiveTask>
<receiveTask id=”t3 ” name=”Receive IA #3”>

<incoming>s f 4</incoming>
<outgoing>s f 6</outgoing>

</receiveTask>
<sendTask id=”t4 ” name=”Send IA #4”>

<incoming>s f 7</incoming>
<outgoing>s f 8</outgoing>

</sendTask>
<parallelGateway gatewayDirection=”Converging” id=”g2” name=”AND1 merge”>

<incoming>s f 5</incoming>
<incoming>s f 6</incoming>
<outgoing>s f 7</outgoing>

</parallelGateway>
<endEvent id=”e2” name=”end”>

<incoming>s f 8</incoming>
</endEvent>
<sequenceFlow id=” s f 1 ” name=”” sourceRef=”e1” targetRef=”t1 ”/>
<sequenceFlow id=” s f 2 ” name=”” sourceRef=”t1 ” targetRef=”g1”/>
<sequenceFlow id=” s f 3 ” name=”” sourceRef=”g1” targetRef=”t2 ”/>
<sequenceFlow id=” s f 4 ” name=”” sourceRef=”g1” targetRef=”t3 ”/>
<sequenceFlow id=” s f 5 ” name=”” sourceRef=”t2 ” targetRef=”g2”/>
<sequenceFlow id=” s f 6 ” name=”” sourceRef=”t3 ” targetRef=”g2”/>
<sequenceFlow id=” s f 7 ” name=”” sourceRef=”g2” targetRef=”t4 ”/>
<sequenceFlow id=” s f 8 ” name=”” sourceRef=”t4 ” targetRef=”e2”/>

</ proce s s>
<proce s s id=”pr2” name=”Par t i c i pant B”>

<startEvent id=”e3” name=” s t a r t ”>
<outgoing>s f 9</outgoing>

</startEvent>
<receiveTask id=”t5 ” name=”Receive IA #1”>

<incoming>s f 9</incoming>
<outgoing>s f 10</outgoing>

</receiveTask>
<parallelGateway gatewayDirection=”Diverg ing ” id=”g3” name=”AND1”>

<incoming>s f 10</incoming>
<outgoing>s f 11</outgoing>
<outgoing>s f 12</outgoing>

</parallelGateway>
<sendTask id=”t6 ” name=”Send IA #2”>

39

4. Conception

<incoming>s f 11</incoming>
<outgoing>s f 13</outgoing>

</sendTask>
<sendTask id=”t7 ” name=”Send IA #3”>

<incoming>s f 12</incoming>
<outgoing>s f 14</outgoing>

</sendTask>
<parallelGateway gatewayDirection=”Converging” id=”g4” name=”AND1 merge”>

<incoming>s f 13</incoming>
<incoming>s f 14</incoming>
<outgoing>s f 15</outgoing>

</parallelGateway>
<endEvent id=”e4” name=”end”>

<incoming>s f 15</incoming>
</endEvent>
<sequenceFlow id=” s f 9 ” name=”” sourceRef=”e3” targetRef=”t5 ”/>
<sequenceFlow id=” s f 10 ” name=”” sourceRef=”t5 ” targetRef=”g3”/>
<sequenceFlow id=” s f 11 ” name=”” sourceRef=”g3” targetRef=”t6 ”/>
<sequenceFlow id=” s f 12 ” name=”” sourceRef=”g3” targetRef=”t7 ”/>
<sequenceFlow id=” s f 13 ” name=”” sourceRef=”t6 ” targetRef=”t8 ”/>
<sequenceFlow id=” s f 14 ” name=”” sourceRef=”t7 ” targetRef=”t9 ”/>
<sequenceFlow id=” s f 15 ” name=”” sourceRef=”t8 ” targetRef=”g4”/>

</ proce s s>
<proce s s id=”pr3” name=”Par t i c i pant C”>

<startEvent id=”e5” name=” s t a r t ”>
<outgoing>s f 16</outgoing>

</startEvent>
<receiveTask id=”t8 ” name=”Receive IA #4”>

<incoming>s f 16</incoming>
<outgoing>s f 17</outgoing>

</receiveTask>
<endEvent id=”e5” name=”end”>
<incoming>s f 17</incoming>

</endEvent>
<sequenceFlow id=” s f 16 ” name=”” sourceRef=”t9 ” targetRef=”g4”/>
<sequenceFlow id=” s f 17 ” name=”” sourceRef=”g4” targetRef=”e4”/>

</ proce s s>
</definit ions>

Example 4.2: BPMN Choreography Model Example

4.5. Conclusion

In this chapter, the followed top-down approach of how to build a process collab-
oration, starting with the choreography model and then deriving the public and
private models from it, was explained. It was also shown how the random chore-
ography model generation can be influenced by specifying various build parameters
as well as by imposing pattern-based compliance rules. Furthermore, all necessary
components for generating sound choreography models that satisfy the three levels
of correctness were introduced by explaining the involved generation algorithms as
well as by pointing out the necessity of the Model Tracking component, in which the
model is decomposed into splits, branches and nodes. Also, the indispensability of
the thereby involved control flow logic, with it’s status model for branches and the
necessary functionality of calculating the exact proportion of interactions that are
at free disposal and those that have already determined places within the evolving
model or those that will be needed later by paths that will be created by not yet
consumed gateways, were highlighted. The chapter was concluded by explaining
how the internal model representation is translated to BPMN/XML. Thereby, the
mapping of the internal components to the corresponding BPMN/XML elements
was shown. In the next chapter, it will be explained how the introduced compo-
nents of the random process collaboration generator are implemented within the

40

4. Conception

CRISP framework.

41

